
www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Oracle
Data Integrator 11g:
A Hands-On Tutorial

Combine high volume data movement, complex
transformations and real-time data integration with
the robust capabilities of ODI in this practical guide

Peter C. Boyd-Bowman

Christophe Dupupet

Denis Gray

David Hecksel

Julien Testut

Bernard Wheeler

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Oracle Data Integrator 11g:
A Hands-On Tutorial

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2012

Production Reference: 1180512

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-068-4

www.packtpub.com

Cover Image by David Gutierrez (bilbaorocker@yahoo.co.uk)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Peter C. Boyd-Bowman

Christophe Dupupet

Denis Gray

David Hecksel

Julien Testut

Bernard Wheeler

Reviewers
Uli Bethke

Kevin Glenny

Maciej Kocon

Suresh Lakshmanan

Ronald Rood

Acquisition Editor
Stephanie Moss

Lead Technical Editor
Hyacintha D'Souza

Technical Editors
Veronica Fernandes

Joyslita D'Souza

Project Coordinator
Joel Goveya

Proofreader
Katherine Tarr

Indexer
Hemangini Bari

Graphics
Valentina D'silva

Manu Joseph

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

The May 26, 2011 edition of the Economist magazine cites a report by the the McKinsey
Global Institute (MGI) about data becoming a factor of production, such as physical
or human capital. Across the industry, enterprises are investing significant resources
in harnessing value from vast amounts of data to innovate, compete, and reduce
operational costs.

In light of this global focus on data explosion, data revolution, and data analysis
the authors of this book couldn't have possibly chosen a more appropriate time to
share their unique insight and broad technical experience in leveraging Oracle Data
Integrator (ODI) to deliver key data integration initiatives across global enterprises.

Oracle Data Integrator constitutes a key product in Oracle's Data Integration product
portfolio. ODI product architecture is built on high performance ELT, with guiding
principles being: ease of use, avoiding expensive mid-tier transformation servers,
and flexibility to integrate with heterogeneous platforms.

I am delighted that the authors, six of the foremost experts on Oracle Data Integrator
11g have decided to share their deep knowledge of ODI in an easy to follow manner
that covers the subject material both from a conceptual and an implementation
aspect. They cover how ODI leverages next generation Extract-Load-Transformation
technology to deliver extreme performance in enabling state of the art solutions
that help deliver rich analytics and superior business intelligence in modern data
warehousing environments. Using an easy-to-follow hands-on approach, the authors
guide the reader through successively complex and challenging data integration
tasks—from the basic blocking and tackling of creating interfaces using a multitude of
source and target technologies, to more advanced ODI topics such as data workflows,
management and monitoring, scheduling, impact analysis and interfacing with ODI
Web Services. If your goal is to jumpstart your ODI 11g knowledge and productivity
to quickly deliver business value, you are on the right track. Dig in, and Integrate.

Alok Pareek
Vice President, Product Management/Data Integration
Oracle Corp

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Peter C. Boyd-Bowman is a Technical Consulting Director with the Oracle
Corporation. He has over 30 years of software engineering and database
management experience, including 12 years of focused interest in data warehousing
and business intelligence. Capitalizing on his extensive background in Oracle
database technologies dating back to 1985, he has spent recent years specializing
in data migration. After many successful project implementations using Oracle
Warehouse Builder and shortly after Oracle's acquisition of the Sunopsis
Corporation, he switched his area of focus over to Oracle's flagship ETL product:
Oracle Data Integrator. He holds a BS degree in Industrial Management and
Computer Science from Purdue University and currently resides in North Carolina.

Christophe Dupupet is a Director of Product Management for ODI at Oracle. In
this role, he focuses on the Customer Care program where he works closely with
strategic customers implementing ODI. Prior to Oracle, he was part of the team that
started the operations for Sunopsis in the US (Sunopsis created the ODI product and
was acquired by Oracle in 2006).

He holds an Operations Research degree from EISTI in France, a Masters Degree
in Operations Research from Florida Tech, and a Certificate in Management from
Harvard University.

He writes blogs (mostly technical entries) at http://blogs.oracle.com/
dataintegration as well as white papers.

Special thanks to my wife, Viviane, and three children, Quentin,
Audrey, and Ines, for their patience and support for the long
evenings and weekends spent on this book.

www.it-ebooks.info

http://www.it-ebooks.info/

David Hecksel is a Principal Data Integration Architect at Oracle. Residing in
Dallas, Texas, he joined Oracle in 2006 as a Pre-sales Architect for Oracle Fusion
Middleware. Six months after joining, he volunteered to add pre-sales coverage for
a recently acquired product called Oracle Data Integrator and the rest (including
the writing of this book) has been a labor of love working with a platform
and solution that simultaneously provides phenomenal user productivity and
system performance gains to the traditionally separate IT career realms of Data
Warehousing, Service Oriented Architects, and Business Intelligence developers.
Before joining Oracle, he spent six years with Sun Microsystems in their Sun
Java Center and was CTO for four years at Axtive Software, architecting and
developing several one-to-one marketing and web personalization platforms such
as e.Monogram. In 1997, he also invented, architected, developed, and marketed the
award-winning JCertify product online—the industry's first electronic delivery of
study content and exam simulation for the Certified Java Programmer exam. Prior
to Axtive Software, he was with IBM for 12 years as a Software Developer working
on operating system, storage management, and networking software products. He
holds a B.S. in Computer Science from the University of Wisconsin-Madison and a
Masters of Business Administration from Duke University.

Julien Testut is a Product Manager in the Oracle Data Integration group focusing
on Oracle Data Integrator. He has an extensive background in Data Integration
and Data Quality technologies and solutions. Prior to joining Oracle, he was an
Applications Engineer at Sunopsis which was then acquired by Oracle. He holds a
Masters degree in Software Engineering.

I would like to thank my wife Emilie for her support and patience
while I was working on this book. A special thanks to my family and
friends as well.

I also want to thank Christophe Dupupet for driving all the way
across France on a summer day to meet me and give me the
opportunity to join Sunopsis. Thanks also to my colleagues who
work and have worked on Oracle Data Integrator at Oracle and
Sunopsis!

www.it-ebooks.info

http://www.it-ebooks.info/

Bernard Wheeler is a Customer Solutions Director at Oracle in the UK, where
he focuses on Information Management. He has been at Oracle since 2005, working
in pre-sales technical roles covering Business Process Management, SOA, and Data
Integration technologies and solutions. Before joining Oracle, he held various pre-
sales, consulting, and marketing positions with vendors such as Sun Microsystems,
Forte Software, Borland, and Sybase as well as worked for a number of systems
integrators. He holds an Engineering degree from Cambridge University.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Uli Bethke has more than 12 years of experience in various areas of data
management such as data analysis, data architecture, data modeling, data migration
and integration, ETL, data quality, data cleansing, business intelligence, database
administration, data mining, and enterprise data warehousing. He has worked in
finance, the pharmaceutical industry, education, and retail.

He has more than three years of experience in ODI 10g and 11g.

He is an independent Data Warehouse Consultant based in Dublin, Ireland. He has
implemented business intelligence solutions for various blue chip organizations in
Europe and North America. He runs an ODI blog at www.bi-q.ie.

I would like to thank Helen for her patience with me. Your place in
heaven is guaranteed. I would also like to thank my little baby boy
Ruairí. You are a gas man.

Kevin Glenny has international software engineering experience, which includes
work for European Grid Infrastructure (EGI), interconnecting 140K CPU cores and
25 petabytes of disk storage. He is a highly rated Oracle Consultant, with four years
of experience in international consulting for blue chip enterprises. He specializes
in the area of scalable OLAP and OLTP systems, building on his Grid computing
background. He is also the author of numerous technical articles and his industry
insights can be found on his company's blog at www.BigDataMatters.com.

GridwiseTech, as Oracle Partner of the Year 2011, is the independent specialist
on scalability and large data. The company delivers robust IT architectures for
significant data and processing loads. GridwiseTech operates globally and serves
clients ranging from Fortune Global 500 companies to government and academia.

www.it-ebooks.info

http://www.it-ebooks.info/

Maciej Kocon has been in the IT industry for 10 years. He began his career as a
Database Application Programmer and quickly developed a passion for the SQL
language, data processing, and analysis.

He entered the realm of BI and data warehousing and has specialized in the design
of EL-T frameworks for integration of high data volumes. His experience covers the
full data warehouse lifecycle in various sectors including financial services, retail,
public sector, telecommunications, and clinical research.

To relax, he enjoys nothing more than taking his camera outdoors for a photo session.

He can be reached at his personal blog http://artofdi.com.

Suresh Lakshmanan is currently working as Senior Consultant at Keane Inc.,
providing technical and architectural solutions for its clients in Oracle products
space. He has seven years of technical expertise with high availability Oracle
Databases/Applications.

Prior to joining Keane Inc., he worked as a Consultant for Sun Microsystems in
Clustered Oracle E-Business Suite implementations for the TSO team. He also
worked with Oracle India Pvt Ltd for EFOPS DBA team specializing in Oracle
Databases, Oracle E-Business Suite, Oracle Application servers, and Oracle
Demantra. Before joining Oracle India, he worked as a Consultant for GE Energy
specializing in the core technologies of Oracle.

www.it-ebooks.info

http://www.it-ebooks.info/

His key areas of interests include high availability/high performance system
design and disaster recovery solution design for Oracle products. He holds an MBA
Degree in Computer Systems from Madurai Kamaraj University, Madurai, India.
He has done his Bachelor of Engineering in Computer Science from PSG College of
Technology, Coimbatore, India. He has written many Oracle related articles in his
blog which can be found at http://applicationsdba.blogspot.com and can be
reached at meet.lsuresh@gmail.com.

First and foremost I would like to thank Sri Krishna, for continually
guiding me and giving me strength, courage, and support in
every endeavor that I undertake. I would like to thank my parents
Lakshmanan and Kalavathi for their blessings and encouragements
though I live 9,000 miles away from them. Words cannot express
the amount of sacrifice, pain, and endurance they have undergone
to raise and educate my brother, sister, and me. Hats off to you both
for your contributions in our lives. I would like to thank my brother
Srinivasan and my sister Suganthi. I could not have done anything
without your love, support, and patience. There is nothing more
important in my life than my family. And that is a priority that will
never change. I would like to thank authors David Hecksel and
Bernard Wheeler for giving me a chance to review this book. And
my special thanks to Reshma, Poorvi, and Joel for their patience
while awaiting a response from me during my reviews.

Ronald Rood is an innovating Oracle DBA with over 20 years of IT experience.
He has built and managed cluster databases on about each and every platform
that Oracle has ever supported, right from the famous OPS databases in version 7
until the latest RAC releases, the current release being 11g. He is constantly looking
for ways to get the most value out of the database to make the investment for his
customers even more valuable. He knows how to handle the power of the rich Unix
environment very well and this is what makes him a first-class troubleshooter and
solution architect. Apart from the spoken languages such as Dutch, English, German,
and French, he also writes fluently in many scripting languages.

www.it-ebooks.info

http://www.it-ebooks.info/

Currently, he is a Principal Consultant working for Ciber in The Netherlands where
he cooperates in many complex projects for large companies where downtime is not
an option. Ciber (CBR) is an Oracle Platinum Partner and committed to the limit.

He often replies in the oracle forums, writes his own blog called From errors we
learn... (http://ronr.blogspot.com), writes for various Oracle-related magazines,
and also wrote a book, Mastering Oracle Scheduler in Oracle 11g Databases where
he fills the gap between the Oracle documentation and customers' questions. He
also was part of the technical reviewing teams for Oracle 11g R1/R2 Real Application
Clusters Essentials and Oracle Information Integration, Migration, and Consolidation, both
published by Packt Publishing.

He has many certifications to his credit, some of them are Oracle Certified Master,
Oracle Certified Professional, Oracle Database 11g Tuning Specialist, Oracle Database
11g Data Warehouse Certified Implementation Specialist.

He fills his time with Oracle, his family, sky-diving, radio controlled model airplane
flying, running a scouting group, and having lot of fun.

He believes "A problem is merely a challenge that might take a little time so solve".

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Product Overview	 11

ODI product architecture	 13
ODI repository	 15

Repository overview	 15
Repository location	 16
Master repository	 16
Work repository	 17
Execution repository	 17
Lifecycle management and repositories	 18

Studio	 19
Agent	 22
Console	 24
Oracle Enterprise Manager	 26

ODI key concepts	 26
Execution Contexts	 27
Knowledge Modules	 28
Models	 30
Interfaces	 31

Interface descriptions	 31
Interface mappings	 31
Interface flow tab	 32
Interface controls	 34

Packages and Scenarios	 34
Summary	 34

Chapter 2: Product Installation	 35
Prerequisites	 35

Prerequisites for the repository	 36
Prerequisites for the Oracle Universal Installer	 36

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Prerequisites for the Studio	 36
Prerequisites for the Standalone Agent	 37

Installing ODI 11g	 37
Two installation modes	 37
Creating the repository with RCU	 38
Installing the ODI Studio and the ODI Agent	 50
Starting the ODI Studio for the first time	 67

Post installation—parameter files review	 69
Summary	 70

Chapter 3: Using Variables	 71
Defining variables	 71

Variable location and scope	 71
Variable definitions	 72
Refreshing variables	 73
Variable history	 74

Using variables for dynamic information	 74
Assigning a value to a variable	 75

Setting a hardcoded value	 75
Refresh Variable	 76
Passed as a parameter (Declare Variable)	 76

Referencing variables	 77
Variables in interfaces	 77
Variables in models	 79
Variables in topology	 80

Using variables to alter workflows	 80
Packages	 80
Load Plans	 82

Summary	 83
Chapter 4: ODI Sources, Targets, and Knowledge Modules	 85

Defining Physical Schemas, Logical Schemas, and Contexts	 86
Defining physical data servers	 86
Defining Physical Schemas	 90

Data schemas and work schemas	 90
Defining Logical Schemas and Contexts	 92
Non-database technologies	 94

Reverse-engineering metadata into ODI models	 100
Standard reverse-engineering	 101
Custom reverse-engineering	 102
File reverse-engineering	 103
XML reverse-engineering	 104

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Examining the anatomy of the interface flow	 105
Example 1: Database and file to database	 105
Example 2: File and database to second file	 108
Example 3: File to Enterprise Application	 110

Importing and choosing Knowledge Modules	 112
Choosing Knowledge Modules	 112
Importing a Knowledge Module	 114
KMs—A quick look under the hood	 115
Configuring behavior with KM options	 117

Examining ODI Interfaces	 119
Overview tab	 120
Mapping tab	 121
Flow tab	 123
Quick-Edit tab	 125

Summary	 126
Chapter 5: Working with Databases	 127

Sample scenario description	 128
Integration target	 128
Integration source	 129
Integration mappings	 129
Data flow logistics	 130

Exercise 1: Building the Load_Customer interface	 131
Building the topology	 131
Reverse-engineering the model metadata	 141
Moving the data using an ODI interface	 148
Checking the execution with the Operator Navigator	 165

Summary	 175
Chapter 6: Working with MySQL	 177

What you can and can't do with MySQL	 178
Working with MySQL	 178

Obtaining and installing the software	 179
Overview of the task	 179
Integrating the product data	 180

Product data target, sources, and mappings	 180
Product interface flow logistics	 181

Integrating inventory data	 182
Inventory target, sources, and mappings	 182
Inventory interface flow logistics	 183

Using MySql with ODI	 183
Adding the MySQL JDBC driver	 184

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Expanding the topology	 185
Reverse-engineering revisited	 188
Preparing to move the product data	 190
Using simulation and execution	 197
Moving the inventory data	 201

Summary	 209
Chapter 7: Working with Microsoft SQL Server	 211

Example: Working with SQL Server	 211
Overview of the task	 212
Integrating the Sales data	 212

Source	 212
Target	 213
Integrations	 213

Sample scenario	 215
Expanding the ODI topology	 215
Setting up the topology	 215
Reverse-engineering the Model metadata	 219
Creating interfaces and mappings	 221
Load Sales Person interface	 221
Load Sales Person mapping	 223
Automatic Temporary Index Management	 227
Load Sales Region interface	 229
Checking the execution with the Operator Navigator	 232

Execute the Load Sales Person interface	 232
Verify and examine the Load Sales Person results	 233
Verify and examine Load Sales Region results	 236

Summary	 237
Chapter 8: Integrating File Data	 239

Working with flat files	 240
Scope	 240
Prerequisites for flat files	 240
Integrate the file data into an Oracle table	 241

Partner data target, source, and mappings	 241
Partner interface flow logistics	 242

Step-by-step example	 243
Expanding the topology for file handling	 244
Integrating the Partner data	 247

Creating and preparing the project	 255
Creating the interface to integrate the Partner data	 256
Running the interface	 258

Summary	 261

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 9: Working with XML Files	 263
Introduction to XML	 263
Introducing the ODI JDBC driver for XML	 265

ODI and its XML driver—basic concepts	 265
Example: Working with XML files	 268

Requirements and background	 268
Scope	 269
Overview of the task	 269

Integrating a Purchase Order from an XML file	 269
Creating models from XML files	 270
Integrating the data from a single Purchase Order	 270
Single order interface flow logistics	 272

Sample scenario: Integrating a simple Purchase Order file	 274
Expanding the Topology	 274
Reverse-engineering the metadata	 278
Creating the Interface	 280
Creating procedures	 288

Summary	 293
Chapter 10: Creating Workflows—Packages and Load Plans	 295

Packages	 295
Creating a package	 295
Adding steps into a package	 297
Adding tools in a package	 299

Changed Data Capture 	 299
Event Detection 	 299
Files	 299
Internet	 299
Metadata	 300
ODI Objects	 300
Plugins	 300
SAP	 300
Utilities	 300
Adding tools to a package 	 300
Using ODI Tools	 300

Retry versus fail	 301
Best practice: No infinite loop	 302
Generating a scenario from a package	 302

Load Plans	 303
Serial and parallel steps	 304
Objects that can be used in a Load Plan	 304
Exception handling	 305
Using Packages and Load Plans	 307

Summary	 307

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Chapter 11: Error Management	 309
Managing data errors	 310

Detecting and diverting data errors	 310
Data quality with ODI constraints	 310
ODI error table prefix	 313
Contents of an error table	 314
Using flow control and static control	 314
Using error thresholds	 316

Correcting and recycling data errors	 316
Recycling errors and ODI update keys	 318

Managing execution errors	 319
Handling anticipated errors	 319

Causing a deliberate benign error with OdiBeep	 320
Handling unexpected design-time errors	 321

More detailed error investigation in Operator Navigator	 322
Handling unexpected runtime errors	 324

Handling operational errors	 326
Summary	 327

Chapter 12: Managing and Monitoring ODI Components	 329
Scheduling with Oracle Data Integrator	 329

Overview	 330
Illustrating the schedule management user interface	 332
Using third-party schedulers	 334

Fusion Middleware Console Control	 335
Launching and accessing the FMCC	 336
Domain	 336
Agent	 337

Starting and stopping	 338
Performance summary	 338

Log file visibility and aggregation	 339
Visibility	 339
Aggregation	 340

Repository visibility	 341
Session statistics	 341

Oracle Data Integrator Console	 342
Launching and accessing ODI Console	 343
Data Lineage	 343
Flow Map	 346

Summary	 347
Chapter 13: Concluding Remarks	 349
Index	 351

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Oracle Data Integrator—background
and history
Oracle has been a leading provider of database, data warehousing, and other data
management technologies for over 30 years. More recently it has also become a
leading provider of standards-based integration, Service-oriented architecture (SOA)
and Business Process Automation technologies (also known as Middleware), Big
Data, and Cloud solutions. Data integration technologies are at the heart of all these
solutions. Beyond the technical solutions, adopting and using ODI allows IT to cross
the chasm between business requirements and data integration challenges.

In July 2010, the 11gR1 release of Oracle Data Integrator was made available to
the marketplace. Oracle Data Integrator 11g (referred to in the rest of this book as
ODI) is Oracle's strategic data integration platform. Having roots from the Oracle
acquisition of Sunopsis in October 2006, ODI is a market leading data integration
solution with capabilities across heterogeneous IT systems. Oracle has quickly and
aggressively invested in ODI to provide an easy-to-use and comprehensive approach
for satisfying data integration requirements within Oracle software products. As a
result, there are dozens of Oracle products such as Hyperion Essbase, Agile PLM,
AIA Process Integration Packs, and Business Activity Monitor (BAM) that are
creating an explosive increase in the use of ODI within IT organizations. If you are
using Oracle software products and have not heard of or used ODI yet, one thing is
sure—you soon will!

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

This book is not meant to be used as a reference book—it is a means to accelerate
your learning of ODI 11g. When designing the book, the following top-level
objectives were kept in mind:

•	 To highlight the key capabilities of the product in relation to data integration
tasks (loading, enrichment, quality, and transformation) and the productivity
achieved by being able to do so much work with heterogeneous datatypes
while writing so little SQL

•	 To select a sample scenario that was varied enough to do something
useful and cover the types of data sources and targets customers are
using most frequently (multiple flavors of relational database, flat files,
and XML data) while keeping it small enough to provide an ODI
accelerated learning experience

•	 To ensure that where possible within our examples, we examine the new
features and functionality introduced with version 11g—the first version
of ODI architected, designed, and implemented as part of Oracle

Data integration usage scenarios
As seen in the following figure, no matter what aspect of IT you work on, all have
a common element among them, that is, Data Integration. Everyone wants their
information accessible, up-to-date, consistent, and trusted.

MDM

DWH/BI

Big

Data

Data

Integration

Apps

SOA

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Data warehouses and BI
Before you can put together the advanced reporting metrics required by the different
entities of your enterprise, you will have to consolidate, rationalize, and organize
the data. Operational systems are too busy serving their customers to be overloaded
by additional reporting queries. In addition, they are optimized to serve their
applications—not for the purposes of analytics and reporting.

Data warehouses are often time-designed to support reporting requirements.
Integrating data from operational systems into data warehouses has traditionally
been the prime rationale for investing in integration technologies: disparate and
heterogeneous systems hold critical data that must be consolidated; data structures
have to be transposed and reorganized. Data Integrator is no exception to the rule
and definitely plays a major role in such initiatives.

Throughout this book, we will cover data integration cases that are typical of
integration requirements found in a data warehousing environment.

Service-oriented architecture (SOA)
Service-oriented architecture encourages the concept of service virtualization. As a
consequence, the actual physical location of where data requests are resolved is of
less concern to consumers of SOA-based services. The SOA implementations rely
on large amounts of data being processed so that the services built on top of the
data can serve the appropriate information. ODI plays a crucial role in many SOA
deployments as it seamlessly integrates with web services. We are not focusing on
the specifics of web services in this book, but all the logic of data movement and
transformations that ODI would perform when working in a SOA environment
would remain the same as the ones described in this book.

Applications
More and more applications have their own requirements in terms of data
integration. As such, more and more applications utilize a data integration tool
to perform all these operations: the generated flows perform better, are easier to
design and to maintain. It should be no surprise then that ODI is used under the
covers by dozens of applications. In some cases, the ODI code is visible and can
be modified by the users of the applications. In other cases, the code is operating
"behind the scenes" and does not become visible.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

In all cases though, the same development best practices, and design rules are
applied. For the most part, application developers will use the same techniques and
best practices when using ODI. And if you have to customize these applications, the
lessons learned from this book will be equally useful.

Master Data Management
The rationale for Master Data Management (MDM) solutions is to normalize data
definitions. Take the example of customer references in an enterprise for instance.
The sales application has a definition for customers. The support application has
its own definition, so do the finance application, and the shipping application. The
objective of MDM solutions is to provide a single definition of the information, so
that all entities reference the same data (versus each having their own definition).
But the exchange and transformation of data from one environment to the next can
only be done with a tool like ODI.

Big Data
The explosion of data in the information age is offering new challenges to IT
organizations, often referenced as Big Data. The solutions for Big Data often rely
on distributed processing to reduce the complexity of processing gigantic volumes
of data. Delegating and distributing processing is what ODI does with its ELT
architecture. As new implementation designs are conceived, ODI is ready to
endorse these new infrastructures. We will not look into Big Data implementations
with ODI in this book, but you have to know that ODI is ready for Big Data
integration as of its 11.1.1.6 release.

What this book covers
The number one goal of this book is to get you familiar, comfortable, and successful
with using Oracle Data Integrator 11gR1. To achieve this, the largest part of the book
is a set of hands-on step-by-step tutorials that build a non-trivial Order Processing
solution that you can run, test, monitor, and manage.

Chapter 1, Product Overview, gets you up to speed quickly with the ODI 11g product
and terminology by examining the ODI 11g product architecture and concepts.

Chapter 2, Product Installation, provides the necessary instructions for the successful
download, installation, and configuration of ODI 11g.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Chapter 3, Using Variables, is a chapter that can be read out of sequence. It covers
variables in ODI, a concept that will allow you to have very dynamic code. We will
mention variables in the subsequent chapters, so having this reference early can help.

Chapter 4, ODI Sources, Targets, and Knowledge Modules, is a general introduction to
the key features of ODI Studio. It will also explain how they map onto core concepts
and activities of data integration tasks, such as sources, targets and how data flows
between them.

Chapter 5, Working with Databases, is the first chapter that will show how to use
ODI Studio to work with databases: how to connect to the databases, how to
reverse-engineer metadata, how to design transformations, and how to review
the executions. This chapter will specifically concentrate on connecting to Oracle
databases, and will be a baseline for chapters 6 to 9.

Chapter 6, Working with MySQL, will introduce the requirements of working with
a different technology: MySQL. We will expand on the techniques covered in the
previous chapter with a description of how to incorporate joins, lookups, and
aggregations in the transformations.

Chapter 7, Working with Microsoft SQL Server, will expand the examples with use
of yet another database, this time Microsoft SQL Server. It will focus on possible
alteration to transformations: Is the code executed on the source, staging area, or
target? When making these choices, where is the code generated in the Operator?
We will also detail how to leverage the ODI Expression editor to write the
transformations, and how to have ODI create a temporary index to further improve
integration performance.

Chapter 8, Integrating File Data, will introduce the notion of flat files and will focus
on the differences between flat files and databases.

Chapter 9, Working with XML Files, will focus on a specific type of file, that is XML
files. This chapter will show how easy it is with ODI to parse XML files with
standard SQL queries.

Chapter 10, Creating Workflows—Packages and Load Plans, will show you how to
orchestrate your work and go beyond the basics of integration.

Chapter 11, Error Management, will explore in depth the subject of error management:
data error versus process errors, how to trap them, and how to handle them.

Chapter 12, Managing and Monitoring ODI Components, will conclude with the
management aspect of the processes, particularly with regard to to scheduling
of the jobs designed with ODI.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

If it is not obvious by the time you finish reading this book, we really like ODI
11gR1. Those feelings have been earned by rock solid architecture choices and an
investment level that allows innovation to flourish—from new agent clustering
and manageability features to integrating with any size of system, including the
largest data warehouses using Oracle, Exadata, Teradata, and others from files
to in-memory data caches.

What you need for this book
If you want to follow the examples in your own environment, you'll need:

•	 Oracle Data Integrator 11g
•	 Oracle database (10g or 11g)
•	 Microsoft SQL Server (2005 or 2008)
•	 MySQL 5 and higher
•	 RCU (Oracle Repository Creation Utility) and Java 1.6

(needed for the Oracle Universal Installer that installs ODI)

Who this book is for
This book is intended for those who are interested in, or responsible for, the content,
freshness, movement, access to, or integration with data. Job roles that are a likely
match include ETL developers, Data Warehouse Specialists, Business Intelligence
Analysts, Database Administrators, Database Programmers, Enterprise, or Data
Architect, among others.

Those interested in, or responsible for, data warehouses, data marts, operational data
stores, reporting and analytic servers, bulk data load/movement/transformation, real-
time Business Intelligence, and/or MDM will find this material of particular interest.

No prior knowledge or experience with Oracle Data Integrator is required or
assumed. However, people with experience in programming with SQL or developing
ETL processes with other products will better understand how to achieve the same
tasks—hopefully being more productive and with better performance.

Who this book is not for
This book is not for someone looking for a tutorial on SQL and/or relational
database concepts. It is not a book on advanced features of ODI, or advanced
integration techniques using ODI.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[7]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We'll be integrating data into the
PURCHASE_ORDER table in the data mart".

A block of code is set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Building>
 <StreetAddr>32 Lincoln Road</StreetAddr>
 <Locality>Olton</Locality>
 <City>Birmingham</City>
 <StateOrProv>West Midlands</StateOrProv>
 <PostCode>B27 6PA</PostCode>
 <CountryCode>44</CountryCode>
</Building>

Any command-line input or output is written as follows:

OdiFileCopy -FILE=c:/po/input/order_20001.xml
 -TOFILE=c:/po/input/single_po.xml -CASESENS=yes

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Next
we click on the browse icon to the right of the JDBC Url field to open the URL
examples dialog".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[8]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[9]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview
The purpose of ETL (Extract, Load, Transform) tools is to help with the consolidation
of data that is dispersed throughout the information system. Data is stored in disparate
applications, databases, files, operating systems, and in incompatible formats. The
consequences of such a dispersal of the information can be dire, for example, different
business units operating on different data will show conflicting results and information
cannot be shared across different entities of the same business.

Imagine the marketing department reporting on the success of their latest campaign
while the finance department complains about its lack of efficiency. Both have
numbers to back up their assertions, but the numbers do not match!

What could be worse than a shipping department that struggles to understand
customer orders, or a support department that cannot confirm whether a customer
is current with his/her payment and should indeed receive support? The examples
are endless.

The only way to have a centralized view of the information is to consolidate the
data—whether it is in a data warehouse, a series of data marts, or by normalizing
the data across applications with master data management (MDM) solutions. ETL
tools usually come into play when a large volume of data has to be exchanged (as
opposed to Service-Oriented Architecture infrastructures for instance, which would
be more transaction based).

In the early days of ETL, databases had very weak transformation functions. Apart
from using an insert or a select statement, SQL was a relatively limited language. To
perform heavy duty, complex transformations, vendors put together transformation
platforms—the ETL tools.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[12]

Over time, the SQL language has evolved to include more and more transformation
capabilities. You can now go as far as handling hierarchies, manipulating XML
formats, using analytical functions, and so on. It is not by chance that 50 percent of
the ETL implementations in existence today are done in plain SQL scripts—SQL
makes it possible.

This is where the ODI ELT architecture (Extract-Load-Transform—the inversion
in the acronym is not a mistake) comes into play. The concept with ELT is that
instead of extracting the data from a source, transforming it with a dedicated
platform, and then loading into the target database, you will extract from the
source, load into the target, then transform into the target database, leveraging
SQL for the transformations.

Extract

Transform

Load

ETL
Platform Target

Source

FILES

Source

Extract/Load

Transform

Target

Source

FILES

Source

To some extent, ETL and ELT are marketing acronyms. When you look at ODI
for instance, it can perform transformations on the source side as well as on the
target side. You can also dedicate some database or schema for the staging and
transformation of your data, and can have something more similar to an ETL
architecture. Similarly, some ETL tools all have the ability to generate SQL code
and to push some transformations at the database level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

The key differences then for a true ELT architecture are as follows:

•	 The ability to dynamically manage a staging area (location, content,
automatic management of table alterations)

•	 The ability to generate code on source and target systems alike, in the
same transformation

•	 The ability to generate native SQL for any database on the market—most
ETL tools will generate code for their own engines, and then translate that
code for the databases—hence limiting their generation capacities to their
ability to convert proprietary concepts

•	 The ability to generate DML and DDL, and to orchestrate sequences of
operations on the heterogeneous systems

In a way, the purpose of an ELT tool is to provide the comfort of a graphical interface
with all the functionality of traditional ETL tools, to keep the efficiency of SQL
coding with set-based processing of data in the database, and limiting the overhead
of moving data from place to place.

In this chapter we will focus on the architecture of Oracle Data Integrator 11g, as
well as the key concepts of the product. The topics we will cover are as follows:

•	 The elements of the architecture, namely, the repository, the Studio, the
Agents, the Console, and integration into Oracle Enterprise Manager

•	 An introduction to key concepts, namely, Execution Contexts, Knowledge
Modules, Models, Interfaces, Packages, Scenarios, and Load Plans

ODI product architecture
Since ODI is an ELT tool, it requires no other platform than the source and target
systems. But there still are ODI components to be deployed: we will see in this
section what these components are and where they should be installed.

The components of the ODI architecture are as follows:

•	 Repository: This is where all the information handled by ODI is stored,
namely, connectivity details, metadata, transformation rules and scenarios,
generated code, execution logs, and statistics.

•	 Studio: The Studio is the graphical interface of ODI. It is used by
administrators, developers, and operators.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[14]

•	 Agents: The Agents can be seen as orchestrators for the data movement and
transformations. They are very lightweight java components that do not
require their own server—we will see in detail where they can be installed.

•	 Console: The Console is a web tool that lets users browse the ODI
repository, but it is not a tool used to develop new transformations. It can
be used by operators though to review code execution, and start or restart
processes as needed.

•	 The Oracle Enterprise Manager plugin for ODI integrates the monitoring of
ODI components directly into OEM so that administrators can consolidate
the monitoring of all their Oracle products in one single graphical interface.

At a high level, here is how the different components of the architecture
interact with one another. The administrators, developers, and operators
typically work with the ODI Studio on their machine (operators also have the
ability to use the Console for a more lightweight environment). All Studios
typically connect to a shared repository where all the metadata is stored. At
run time, the ODI Agent receives execution orders (from the Studio, or any
external scheduler, or via a Web Service call). At this point it connects to the
repository, retrieves the code to execute, adds last minute parameters where
needed (elements like connection strings, schema names where the data
resides, and so on), and sends the code to the databases for execution. Once the
databases have executed the code, the agent updates the repository with the
status of the execution (successful or not, along with any related error message)
and the relevant statistics (number of rows, time to process, and so on).

Target

Source

FILES

Source

Data

Data

Data

Agent

Send Code

ODI

Studio

Repository

Store

-Metadata

-Transformation rules

-Logs

Read/Write

Send Code

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Now let's look into the details of each component.

ODI repository
To store all its information, ODI requires a repository. The repository is by default a
pair of schemas (called Master and Work repositories) stored in a database. Unless
ODI is running in a near real time fashion, continuously generating SQL code for
the databases to execute the code, there is no need to dedicate a database for the
ODI repository. Most customers leverage existing database installations, even if
they create a dedicated tablespace for ODI.

Repository overview
The only element you will never find in the repository is the actual data processed
by ODI. The data will be in the source and target systems, and will be moved
directly from source to target. This is a key element of the ELT architecture. All other
elements that are handled through ODI are stored into the repository. An easy way
to remember this is that everything that is visible in the ODI Studio is stored in the
repository (except, of course, for the actual data), and everything that is saved in the
ODI Studio is actually saved into the repository (again, except for the actual data).

The repository is made of two entities which can be separated into two separate
database schemas, namely, the Master repository and the Work repository.

Master

Work
(Exec)

Models
Projects
Logs Logs

Topology
Security

Work
(Dev)

We will look at each one of these in more detail later, but for now you can consider
that the Master repository will host sensitive data whereas the Work repository will
host project-related data. A limited version of the Work repository can be used in
production environments, where the source code is not needed for execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[16]

Repository location
Before going into the details of the Master and Work repositories, let's first look into
where to install the repository.

The repository is usually installed in an existing database, often in a separate
tablespace. Even though ODI is an Oracle product, the repository does not have to
be stored in an Oracle database (but who would not use the best database in the
world?). Generally speaking, the databases supported for the ODI repository are
Oracle, Microsoft SQL Server, IBM/DB2 (LUW and iSeries), Hypersonic SQL, and
Sybase ASE. Specific versions and platforms for each database are published by
Oracle and are available at:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-
certification-100350.html.

It is usual to see the repository share the same system as the target database.

We will now look into the specifics of Master and Work repositories.

Master repository
As stated earlier, the Master repository is where the sensitive data will be stored.
This information is of the following types:

•	 All the information that pertains to ODI users privileges will be saved
here. This information is controlled by administrators through the Security
Navigator of the ODI Studio. We will learn more about this navigator when
we look into the details of the Studio.

•	 All the information that pertains to connectivity to the different systems
(sources and targets), and in particular the requisite usernames and
passwords, will be stored here. This information will be managed by
administrators through the Topology Navigator.

•	 In addition, whenever a developer creates several versions of the same object,
the subsequent versions of the objects are stored in the Master repository.
Versioning is typically accessed from the Designer Navigator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Work repository
Work repositories will store all the data that is required for the developers to design
their data transformations. All the information stored in the Work repository is
managed through the Designer Navigator and the Operator Navigator. The Work
repository contains the following components:

•	 The Metadata that represents the source and target tables, files, applications,
message buses. These will be organized in Models in the Designer Navigator.

•	 The transformation rules and data movement rules. These will be organized
in Interfaces in the Designer Navigator.

•	 The workflows designed to orchestrate the transformations and data
movement. These are organized in Packages and Load Plans in the
Designer Navigator.

•	 The jobs schedules, if the ODI Agent is used as the scheduler for the
integration tasks. These can be defined either in the Designer Navigator
or in the Operator Navigator.

•	 The logs generated by ODI, where the generated code can be reviewed,
along with execution statistics and statuses of the different executions
(running, done successfully or in error, queued, and so on). The logs
are accessed from the Operator Navigator.

Execution repository
In a production environment, most customers do not need to expose the source
code for the processes that are running. Modifications to the processes that run
in production will have to go through a testing cycle anyway, so why store the
source code where one would never access it? For that purpose, ODI proposes an
execution repository that only stores the operational metadata, namely, generated
code, execution results, and statistics. The type of Work repository (execution or
development) is selected at installation time. A Work repository cannot be converted
from development to execution or execution to development—a new installation will
be required if a conversion is needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[18]

Lifecycle management and repositories
We now know that there will be different types of repositories. All enterprise
application development teams have more than one environment to consider. The
code development itself occurs in a development environment, the validation of
the quality of the code is typically done in a test environment, and the production
environment itself will have to be separate from these two. Some companies will add
additional layers in this lifecycle, with code consolidation (if remote developers have
to combine code together), user acceptance (making sure that the code conforms
to user expectations), and pre-production (making sure that everything works as
expected in an environment that perfectly mimics the production environment).

Master

Work
(Exec)

Work
(Dev)

Work
(Exec)XML export/

import
XML export/
import

Restore from
Version management

Version
management

In all cases, each environment will typically have a dedicated Work repository. The
Master repository can be a shared resource as long as no network barrier prevents
access from Master to Work repository. If the production environment is behind
a firewall for instance, then a dedicated Master repository will be required for the
production environment.

Master Master

Work
(Exec)

Work
(Dev)

Work
(Exec)XML export/

import

Version
management

XML export/
import

XML export/
import

Restore

F
I
R
E
W
A
L
L

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

The exchange of metadata between repositories can be done in one of the
following ways:

•	 Metadata can be exchanged through versioning. All different versions of
the objects are uploaded to the Master repository automatically by ODI as
they are created. These versions can later be restored to a different Work
repository attached to the same Master repository.

•	 All objects can be exported as XML files, and XML files can be used to import
the exported objects into the new repository. This will be the only option if a
firewall prevents connectivity directly to a central Master repository.

In the graphical representations shown previously, the leftmost repository is
obviously our development repository, and the rightmost repository is the
production repository. Why are we using an execution for the test environment?
There are two rationales for this. They are as follows:

•	 There is no point in having the source code in the test repository, the source
code can always be retrieved from the versioning mechanisms.

•	 Testing should not be limited to the validation of the artifacts concocted
by the developers; the process of migrating to production should also
be validated. By having the same setup for our test and production
environments, we ensure that the process of going from a development
repository to an execution repository has been validated as well.

Studio
The ODI Studio is the graphical interface provided to all users to interact with ODI.

People who need to use the Studio usually install the software on their own
machine and connect to a shared repository. The only exception would be when
the repository is not on the same LAN as the Studio. In that case, most customers
use Remote Terminal Service technologies to ensure that the Studio is local to the
repository (same LAN). Only the actual display is then sent over the WAN.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[20]

The Studio includes four navigators that are typically used by different users who can
share the same objects and the same repository. Some users may not have access to
some navigators, depending on their security profiles. The navigators are as follows:

•	 Security Navigator: This navigator is typically used by system
administrators, security administrators, and DBAs. Through this interface,
they can assign roles and privileges to the different users, making sure that
they can only view and modify objects that they are allowed to handle.

•	 Topology Navigator: This navigator is usually restricted to DBAs and
System administrators. Through this interface, they declare the systems
where the data resides (sources, targets, references, and so on), along with
the credentials that ODI will use to connect to these systems. Developers
and operators will leverage the information stored in the repository, but
will not necessarily have the right to modify, or even view that information.
They will be provided with a name for the connections and this is all they
will need. We will see this in more detail when we address logical schemas.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

•	 Designer Navigator: This navigator is used by developers and data
custodians alike. Metadata are imported and enriched through this
navigator. The metadata is then used to define the transformations
in objects called Interfaces. The Interfaces are finally orchestrated in
workflows called Packages.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[22]

•	 Operator Navigator: This navigator is used by developers and operators.
In a development environment, developers will use the Operator views to
check on the code generated by ODI, to debug their transformations, and to
validate and understand performance of their developments. In a production
environment, operators use this same navigator to view which processes are
running, to check whether processes are successful or not, and to check on
the performance of the processes that are running.

Agent
The ODI Agent is the component that will orchestrate all the operations. If SQL code
must be executed by a database (source or target), the agent will connect to that
database and will send the code (DDL and DML, as needed) for that database to
perform the transformations. If utilities must be used as part of the transformations
(or, more likely, as part of the data transfer) then the agent will generate whatever
configuration files or parameter files are required for the utility, and will invoke this
utility with the appropriate parameters—SQL Loader, BCP, Multiload, and NZload
are just a small list of such utilities.

There are two types of ODI Agent, namely, the standalone agent (available in all
releases of ODI) and the JEE agent (available with ODI 11g and after) that runs on
top of WebLogic Server. Each type has its own benefits, and both types of agents
can co-exist in the same environment:

•	 The JEE agent will take advantage of Weblogic in terms of high availability
and pooling of the connections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

•	 The standalone agents are very lightweight and can easily be installed on any
platform. They are small Java applications that do not require a server.

A common configuration is to use the JEE agent as a "Master" agent, whose sole
purpose it is to distribute execution requests across several child agents. These
children can very well be standalone agents. The master agent will know at all
times which children are up or down. The master agent will also balance the
load across all child agents.

In a pure standalone environment, the Agent is often installed on the target server.
Agents are also often installed on file servers, where they can leverage database
loading utilities to bulk load data into the target systems. Load balancing can also
be done with a standalone master agent. Multiple standalone agents can run on the
same server, as long as they each have a dedicated port. This port number is defined
in the Topology navigator, where the agent is defined.

The Agent can receive execution orders from different origins as follows:

•	 Execution from the Studio: When a user executes a process from
the Studio, he/she is prompted for the name of the agent that will
be in charge of the execution.

•	 Execution from the Console: Similarly to the Studio execution, the person
requesting a process execution will have to choose the Agent in charge.

•	 Execution from a command line: In this case, ODI will start a dedicated
session of the agent, limited to the execution of the process that is passed as
a parameter. The script to be used to start a process from a command line is
startscen.bat on Windows or startscen.sh on Unix. This script can be
found under the /bin directory under the agent installation path.

•	 Execution from a web service: ODI 10g offered this feature but required a
dedicated setup. ODI 11g offers this feature as part of the agent deployment.
All agents support web services to start processes. For a standalone agent,
connect to the agent via HTTP to view the associated WSDL. For instance,
if the agent is running on server odi_dev on port 20910, the wsdl can be
found on this very machine at http://odi_dev:20910/oraclediagent/
OdiInvoke?wsdl.
The application name for a standalone agent will always be oraclediagent.
Customers using a JEE agent will use the application name for the ODI Agent.

•	 ODI Schedules: If ODI processes are scheduled from within ODI (from
the Operator navigator or the Designer navigator) then the schedule itself
is associated with an agent. Either the schedules will be uploaded to the
agent by an administrator, or the agent will refresh its list of schedules
when it is restarted.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[24]

Console
The Console is an HTML interface to the repository. The Console is installed on a
WebLogic Server (other application servers will be supported with later releases
of the product).

The Console can be used to browse the repository, but no new developments can
be created through this interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

The Console is useful for viewing lineage and impact analysis without having the
full Studio installed on a machine. Operators can also perform most of the tasks they
would perform with the Studio, including starting or restarting processes.

The exact information that is available in the Operator Navigator of the Studio will
be found in the matching view of the Console: generated code, execution statistics,
and statuses of executed processes are all available.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[26]

Oracle Enterprise Manager
As part of the consolidation of features across all Oracle product lines, ODI now
integrates with WebLogic Enterprise Manager.

Administrators can now use one single tool (OEM) to monitor the overall health of
their environment, including ODI Agents and ODI processes.

ODI key concepts
Understanding key concepts in ODI will help developers take advantage of the
graphical interface and further improve their productivity. In no specific order, we
will now review the notions of Execution Contexts, Knowledge Modules, Models,
Interfaces, Packages, and Scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Execution Contexts
Everyone encounters the same issue. The parameters used to connect to the
development server are different from the parameters used in the QA or
production servers and there could be more than these few environments. Some
companies add environments such as user acceptance, code consolidation, and
pre-production; you name it and it is there! Maintaining the connection parameters
is a cumbersome activity. Beyond the maintenance itself, there is a risk if these
parameters are modified in the code after the code has been validated by the QA
team. Ideally, connection parameters and environment-specific parameters should
be maintained independently of the code. This is what ODI provides with the
notion of Execution Contexts.

To make sure that developers are independent of the physical location of the
different systems, ODI enforces the use of Logical Schemas. Logical Schemas are
labels or aliases that represent the connections for the developers. At execution
time, the agent will translate these logical names into physical ones based on the
information stored in the repository. This way, the maintenance of the connection
parameters, location of the databases, and schema names is entirely independent
of the code itself.

In addition, whenever an ODI process is executed, a Context must be selected. The
structure of the metadata will always be the same from one environment to the next
(say for instance, development, QA, and production) but the connection information
will be different. By selecting an execution context, the agent will know which
connection definition to use when completing the code.

Development Server
IP: 105.02.11.85
User Name: dev_odi
Password:123456

Windows

db_dwh

IP: 105.02.11.74
User Name: ODI
Password: 654321

Linux

QA Server

dwh

IP: 110.47.33.02
User Name: ODI_TMP
Password: 123456

Linux

Production Server

db_dwh_prd

Physical Architecture

Datawarehouse
(Logical Schema)

Logical Architecture

Context

Dev
elo

pm
en

t Production

Q
A

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[28]

In the previous figure, the logical name Datawarehouse is actually pointing to
the physical schema db_dwh in the development server as long as we execute the
transformations in the development context. It will automatically point to the dwh
schema in the QA server for the QA context.

The physical details are maintained in the Physical Architecture of the Topology
Navigator and the logical names that point to the physical implementations are
defined in the Logical Architecture of the Topology Navigator. The Context
accordion lets administrators define as many contexts as needed. At run time, the
selection of a Context will define which physical implementation to use for each
logical name used in the code.

The physical architecture will contain the details for ODI to log in to the database,
the IP address or name of the server on which the database runs, the port numbers
to connect to the database, as well as the name of the actual schemas, catalogs,
libraries, and other objects found in these databases.

Knowledge Modules
A Knowledge Module (KM) is a template of code that defines what types of SQL
queries (insert, select, and so on) and what scripts need to be generated to complete
the data extraction, loading, and transformation operations.

There were several objectives behind the inception of these KMs. Some of them are
as follows:

•	 Improve productivity: Integration tasks are very repetitive in nature. Once
the extract/load techniques have been defined for a given project, they will
be reused over and over again. Consolidating these practices in reusable
templates helps improve developers' productivity.

•	 Encapsulate integration best practices: Even if a team agrees on integration
best practices, there is usually no guarantee that all developers will
implement what has been decided. In other cases, only the best developers
will come up with the best integration strategies. By encapsulating the
integration strategies in a template, all developers can share the same
quality of code.

•	 Allow for further customizations: Oracle is doing its best to encapsulate
industry best practices in all KMs no matter what database you are
using—but your environment is unique, and at times only you can further
optimize the code that will be generated. Again, to make sure that all
developers will benefit from the ultimate optimizations, customized KMs
will be shared by all developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

Typically, an ETL developer will be able to use a Knowledge Module without any
need to understand the underlying requirements (creation of staging tables, location
of these tables, intermediate operations on these tables, cleanup of these tables, and
so on).

The developer will control what code will be generated by setting yes/no options to
insert records, perform updates, create the target table, and so on.

There are six types of Knowledge Modules that will enable various steps in the data
integration process:

•	 Loading Knowledge Modules (LKM): These modules determine how to
extract and load data across two heterogeneous technologies. Different
Knowledge Modules will offer different connection strategies such as JDBC
connection, and database load/unload utilities.

•	 Integration Knowledge Modules (IKM): These modules define the strategy
used to integrate the data into the target. The different strategies include
inserts only, update and inserts, slowly changing dimension, and so on.

•	 Check Knowledge Modules (CKM): These modules implement in-line data
quality control before insertion into the target such as validate business rules,
control the uniqueness of primary keys, and validate the existence of parent
records for foreign keys.

•	 Reverse-engineering Knowledge Modules (RKM): These modules import
the metadata for a given technology into the ODI repository. These KMs are
usually used for enterprise applications rather than databases. Most reverse-
engineering operations will not require any KM since the JDBC drivers
leveraged by ODI usually support reverse-engineering operations.

•	 Journalizing Knowledge Module (JKM): This module manages the ODI
journals and necessary CDC mechanisms to provide automatic Changed
Data Capture (CDC) functionality.

•	 Service Knowledge Modules (SKM): These modules automatically generate
the code and expose the database table operations as web services. Insert,
update, delete, select, or consumption of data changes can then be performed
by using these web services.

Knowledge Modules are named after the specific database for which they have been
optimized, the utilities that they leverage, and the technique that they implement. For
instance, an IKM Teradata to File (TTU) will move data from Teradata into a flat file,
and leverage the TTU utilities for that operation, or an LKM File to Oracle (EXTERNAL
TABLE) will expose a flat file as an external table for Oracle. Similarly, an IKM Oracle
Slowly Changing Dimension will generate code optimized for the Oracle database
which implements a Slowly Changing Dimension (Type 2) type of integration.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[30]

Most developers will only use out of the box KMs—only the most advanced
developers will modify the code templates. For that reason, we will keep KM
modifications outside the scope of this book. But the examples we will go through
in the rest of this book will help you understand how best to select a KM for the
task at hand.

Models
Models in ODI are used to store the metadata imported from the databases. When
developers (or data custodian) create a model, they have the choice of importing only
the relevant metadata (you may not want to import the definition of all tables and
views in your environment). As we have seen earlier with Knowledge Modules for
reverse-engineering, metadata can also be imported from applications, where objects
can be a business representation of the data rather than an actual physical table.

Once the metadata has been imported, it can be organized and enhanced—Models
can be grouped in folders. Submodels can be created within Models to organize
tables in logical units.

When submodels are created, the users can define how tables will be organized;
either they will be manually moved into the appropriate subfolders, or their location
will be determined automatically by ODI based on their names.

Metadata can be enhanced by adding more constraints (such as referential integrity,
check constraints) that would not exist in the database.

Metadata can also be directly created in ODI. Each model has a Diagrams folder.
Diagrams let users graphically design their table structures. More importantly,
they can drag-and-drop object definitions from other technologies, and ODI will
automatically translate the datatypes from one technology to the next.

If tables are derived from another technology, they can still be manually modified
(by changing the column names, datatypes, adding or removing columns, and
constraints). The hidden benefit of the use of diagrams to create tables from other
Models is the ability to automate the generation of Interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

ODI knows what table was used as a basis for the new one. If you right-click on
the model name, and select the menu option Generate Interfaces IN, ODI will
automatically create an interface with the original table as a source and the new
table as a target with all columns properly mapped. You will be prompted to place
the interface in the project and folder of your choice. We will take a detailed look
at Interfaces in the next section. If you choose to select the menu option Generate
Interfaces OUT, ODI will generate the reverse interface, with the new table as a
source and the original one as a target.

Interfaces
Interfaces are where the transformations are defined. We will spend a lot of time in
this book covering the details of Interfaces. Interfaces are created in projects, and the
various components are organized in Packages.

There are multiple parts to an interface such as description, mappings, flow, controls,
to name a few.

Interface descriptions
Often overlooked, descriptions are the documentation of the objects. Because
the descriptions are stored with the objects in the repository, all documentation
generated by ODI will contain the descriptions. It may sound trivial, but the
descriptions are key to the success of your projects.

Interface mappings
ODI adheres to a concept called "declarative design". The definition of the
transformation logic is isolated from the definition of the data movement and
integration logic for two reasons which are as follows:

•	 Change to one should not alter the other: If I decide to add or remove
columns in my mappings, it should have no impact on the type of
technology I use (external tables, bulk load, JDBC, and so on) or the type
of integration strategy I use (inserts only, updates, and so on). Similarly if
I decide to change technology or integration strategy, this should have no
impact on my transformations.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[32]

•	 Productivity can be greatly improved: Mappings are often unique and must
be handled one column at a time. Integration strategies and technologies can
be selected once for a complete project with minimal changes and reviews.
Separating the two allows developers to focus more on the moving parts
(the transformations) than on the stable parts (the integration strategy).

Mappings are where the transformation logic is defined.

Interface flow tab
The flow tab of the interfaces is where the integration strategies are selected. The
Loading Knowledge Modules (LKM) will define which techniques must be used
to extract data from remote source systems and how to load the data in the target
system. The Integration Knowledge Module (IKM) will define which integration
strategy will be used to integrate the data in the target system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

Interfaces will only list the KMs that have been imported into the project where they
are created (and starting with ODI 11.1.1.6, the Global KMs that are shared across
projects). One key benefit is that it is possible to control which strategies will be used
for a given project, hence limiting the choices of the developers to the choices made
by the team.

This will ensure the following:

•	 All developers implement the same best practice
•	 If changes are required later in the project, they can be done extremely

efficiently by changing the standard for a given project
•	 Ideally, because the choice can be limited, developers know that ODI

will always choose the KM they need and do not even have to worry
about that step

www.it-ebooks.info

http://www.it-ebooks.info/

Product Overview

[34]

Interface controls
One option that is available with some IKMs is the ability to control data integrity on
the fly. There are two options called Flow Control and Static Control. Flow Control
will check for data inconsistencies, remove invalid data from the staging tables, and
write them to a separate error table. Static Control will check for inconsistencies in
the target table after it has been loaded with all incoming records. Invalid records
identified in the target table are then copied to the error table but they are not
removed from the target table. When developers decide to activate one or both
options in the Flow tab of the interface, they can then refine what will be done—the
error table can be recreated automatically. Some constraints can be ignored while
others are enforced.

All constraints listed here are defined at the metadata level, under the definition
of the tables in the Models.

Packages and Scenarios
Packages are designed to orchestrate the individual objects created by the
developers—interfaces, variables, procedures will be sequenced in Packages.
If a step fails in a package, it is possible to branch out and immediately take
action based on the errors that are detected. For execution purposes, Packages
are compiled into Scenarios. Scenarios execution can then be organized with
Load Plans. We will see all these concepts in more detail in a dedicated chapter.

Summary
In this chapter we started by exploring the core concepts behind ODI architecture
and components.

In terms of architecture, you should now have a better understanding of what
the different elements are, in particular the repository, Studio, and Agents. This
will be important as you go into the next chapter where we cover the installation
of the product.

In terms of concepts, we have covered the key elements that differentiate ODI
from other products, namely, Execution Contexts, Knowledge Modules, Models,
Interfaces, Packages and Load Plans. We will now illustrate these concepts with
actual examples in the rest of the book, expanding on this quick introduction.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation
This chapter provides instructions for installing and configuring the Oracle Data
Integrator product for a development or production environment. After reviewing
the prerequisites for the product installation, we will cover the installation and
configuration of the ODI repository, the Studio (graphical interface), and the
Standalone Agent.

As a point of reference, Oracle maintains a list of prerequisites and step by step
installation instructions at http://www.oracle.com/technetwork/middleware/
data-integrator/documentation/index.html.

Prerequisites
Before installing the product, we have to make sure that all components are available
and that the systems where the product will be installed conform to the product
requirements. Download the required components as follows:

•	 The components need to be downloaded from the ODI OTN web page at
http://www.oracle.com/technetwork/middleware/data-integrator/
downloads/index.html. For the purpose of this book, we will assume that
the installation is done on a Windows operating system. Download the ODI
installation file.

•	 Download the Repository Creation Utility (RCU) tool that will be needed
to create the ODI repositories. RCU can be downloaded from the ODI
download page on OTN.

Make sure to download the latest release of both products. Note that the ODI file
is quite large (close to 2 GB). Depending on the quality of your bandwidth, the
download could take quite a while and should be scheduled accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[36]

Prerequisites for the repository
To install the repository, you must have access to a database certified by Oracle
as being compatible with ODI. The list of supported databases for the repository
can be found in the certification matrix available at at http://www.oracle.com/
technetwork/middleware/data-integrator/odi-11gr1certmatrix-163773.xls.
For the purpose of this book, we will assume that the database hosting the repository
is an Oracle database (10g and 11g are supported at the time of writing). The Oracle
databases can be downloaded from http://www.oracle.com/technetwork/
database/enterprise-edition/downloads/index.html.

The database that will host the repository does not have to be on the same hardware
as the Studio. Multiple developers will share the same repository when projects are
developed, so it is convenient to install the repository in a central location.

Keep in mind that the Studio will make very frequent access to the repository.
From that perspective, the Studio and the repository will have to be on the same
LAN (and since distance adds to latency, they should preferably be at a reasonable
distance—not in a different country or continent for instance).

The repository will use a few gigabytes of disk space to store the metadata,
transformation rules, and (mostly) the logs. Make sure that you have enough disk
space for the database. A good starting point for the size of the repository is 1 GB
each for the Master and Work repository.

Each repository (Master or Work) is typically installed in a dedicated schema. The
privileges required by ODI are "Connect" and "Resource" on an Oracle database, but
keep in mind that the installation program will have more stringent requirements
(the RCU utility will require sysdba privileges to be able to create the repositories).

Prerequisites for the Oracle Universal Installer
Java 1.6 is required for the installer to run. The documentation for the installer
indicates that a JDK version is required, but a JRE installation will be sufficient
for the installation of ODI.

Prerequisites for the Studio
When the setup program installs ODI, it will also install a copy of Java under the
ODI directories, solely for ODI's needs. This will have no impact on other products
you may have that use other versions of Java, and will ensure that you always have
the proper version of Java for ODI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

The Studio itself will have the following requirements:

•	 Disk space: 1 GB (in addition to what is required to store the downloads
from the Oracle website)

•	 Memory: 2 GB

Prerequisites for the Standalone Agent
The prerequisites for the ODI Standalone Agent are fairly limited. They are as follows:

•	 Disk space: 20 MB (but keep in mind that the installation program itself will
require some disk space)

•	 Memory: 1 GB

Installing ODI 11g
In this section we will view step-by-step instructions for installing ODI.

Two installation modes
Since the installation involves several components, there are two distinct installation
modes for the repositories. They are as follows:

•	 Oracle Repository Creation Utility (RCU) installation: Oracle provides
a dedicated program that assists with the creation of repositories. This
tool will create repositories for any Oracle tool that requires such an
infrastructure, including ODI. This tool makes installation extremely
simple, but will necessarily be less flexible than a repository created
directly from the ODI Studio.

•	 Creation from the ODI Studio: The installation program will only install
the graphical interface and the Agent. The repositories can be created from
the Studio graphical interface after it has been properly installed. The Agent
will have to be manually configured to connect to the repository in this case.
This installation mode may be required when additional repositories are to
be created (test, production repositories, and so on). It is worth your while
to familiarize yourself with both approaches.

Oracle recommends the use of the RCU tool for repositories creation. We will focus
on this recommended approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[38]

Creating the repository with RCU
If you have not yet downloaded RCU, then download the latest version which
is available at http://www.oracle.com/technetwork/middleware/data-
integrator/downloads/index.html.

Follow these steps:

1.	 Once you have unzipped the file you have downloaded for RCU, launch
RCU by executing the following file \RCU\rcuHome\BIN\RCU.bat.

2.	 RCU will display the welcome screen. Click on Next, as seen in the following
screenshot, to get RCU started:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

3.	 Select Create to create the ODI repository, as seen in the following screenshot:

4.	 The next step will be to enter the appropriate parameters for RCU to connect
to the database where the repository will be created. For Oracle, select the
Oracle database.

5.	 Enter the hostname. Try not to use "localhost" for the hostname since
the repositories are supposed to be shared by multiple developers and
"localhost" will refer to a different machine for each developer. You can use
the machine name or the IP address of the machine (unless you are using
DHCP, in which case, the IP address could vary on a daily basis).

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[40]

6.	 Provide the port number and service name for the database. Then provide
a username with dba privileges and select SYSDBA for the role. This
is because the tool will create a user for the repository and potentially
even create a tablespace (depending on the answers you provide on the
subsequent screens). Then click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

7.	 RCU will validate the connection parameters. Any connectivity issue (invalid
port number or service name, invalid host, not enough privileges for the
user, and so on) will be reported in the Messages window at the bottom. If
you encounter issues, fix them until all prerequisites are validated and click
on OK:

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[42]

8.	 Now that we can connect to the database, we can select which repository
will be created. Select Oracle Data Integrator. Note that at this point you
can rename the schema where the repository will be created (the default
is DEV_ODI_REPO). Click on Next:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

9.	 RCU will validate the prerequisites that are specific to ODI. Then click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[44]

10.	 You are then prompted for the password for this schema. Enter the password
for the ODI repository schema owner, and click on Next.

11.	 At this point, RCU will prompt you for additional security parameters for the
creation of the repository. They are as follows:

°° Master Repository ID: This ID should be unique to your
environment. If you create more than one Master repository, make
sure that each one has a unique ID, even if these repositories are
completely independent.

°° Supervisor Password: This will be the password for the ODI user
supervisor. You will have to remember this password as you will
need it to launch the ODI Studio later on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

°° Work Repository Type (Development or Execution): Execution
repositories will not allow any development code. Since this is your
first installation, select D for development.

°° Work Repository ID: This ID will have to be unique in
our environment.

°° Work Repository name: A good practice here is to repeat the
repository ID in the repository name.

°° Work Repository Password: Use a password to secure the access to
your repository. You will have to remember this value to connect to
the repository.

°° Click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[46]

12.	 You have the ability to select the tablespace where the repository will be
created. You can either keep the default values or set your own values if
you have a marked preference. Then click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

13.	 If the tablespace does not exist yet, you are prompted to confirm the creation
of the tablespace. Click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[48]

14.	 The tablespace will then be created. Click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

15.	 RCU will provide a summary of all the selections that were made. Validate
your choices and click on Create.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[50]

16.	 Depending on the speed of your processor, the creation of the repositories
can take a while (about 15 minutes here on a very slow machine). Click on
Close when you are done. Your repositories are created.

Installing the ODI Studio and the ODI Agent
In this section, we will go through step-by-step instructions to create the ODI
repository and install both the ODI Studio and the ODI Agent.

1.	 The ODI download comes as a single ZIP file. You will first have to unzip
the file to access the installation program. Once the file is unzipped, you will
see two directories, namely, Disk1 and Disk2. You will find the setup.exe
program directly under Disk1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

2.	 Run the setup.exe program either from a command prompt or from the
Windows Explorer:

The installation program will first validate that the
environment matches its own requirements (swap space,
CPU speed, monitor resolution, and so on). If any of the
prerequisites are missing, you will be prompted to continue
or abort. If all prerequisites are satisfied, an "ODI installer"
screen will be displayed as the installer starts.
If the Oracle Universal Installer window does not appear
after the prerequisites have been validated, check the
Oracle installer specific documentation that can be found
at http://docs.oracle.com/cd/E21764_01/
core.1111/e16453/install.htm#CHDJIDFD.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[52]

The installer screen is as follows:

3.	 After the splash screen disappears, the ODI installation Welcome page
appears. From this point on during the installation, online help is available
by clicking on the Help button at the bottom left at any time. Click on Next
to proceed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

4.	 The next screen provides the details for the two installation modes, namely,
installer driven creation of the repositories (using the Oracle RCU tool),
or creation of the repositories from the graphical interface of ODI. Since
we have seen how to create the repositories with RCU, we will select the
matching option.

5.	 No action is required on this screen; simply click on Next.
6.	 The installer then asks for the desired installation type the choices are

as follows:
°° The Developer Installation will install the Studio (the graphical

interface used to design ETL processes with ODI). It also gives
the option to install the SDK that advanced developers will utilize
to use ODI beyond what is available from the Studio. The SDK
is not covered in this book, but the complete reference guide for
the SDK is available along with the rest of the ODI documentation
at http://www.oracle.com/technetwork/middleware/
data-integrator/documentation/index.html.

°° The Standalone Installation will install the Standalone Agent. You
can elect to install the Standalone Agent and the Studio at the same
time. The Agent is the component in charge of the execution of the
processes in a production environment.
Note that in a development environment, the Studio acts as an Agent.
This is very convenient in the sense that the installation is simplified.
However, offloading orchestration of the ETL processes to an Agent
as compared to using the Studio for both the design of the processes
and their orchestration, is a worthwhile investment in the long run.
The additional benefit is that developers collaborating on a project
can share the same Agent.

°° The Java EE Installation covers all elements that will be installed
on a WebLogic server. WebLogic is a prerequisite for the following
components (but it will not be covered here):

•	 Java EE Agent: It is the same module as the Standalone
Agent, but this Agent takes advantage of all the features
provided by WLS (high availability, pooling of connections,
externalization of security, and so on).

•	 ODI Console: This is a web frontend to access the ODI
repository. Most objects will be read-only, but the lineage
and impact analysis that are available through this interface
will be of particular interest, along with the screens available
to operators to monitor processes without having to install
the Studio.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[54]

•	 Public Web Service: This feature will expose ODI jobs as
web services. One single web service will be used and it will
take the name of the jobs to be executed as a parameter (along
with any other parameters required for the job itself).

7.	 For the purposes of this book, select the ODI Studio and the Standalone Agent.
8.	 Click on Next to proceed:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

9.	 The installer will then run several prerequisite checks to ensure the health
and viability of downstream installation steps and the overall post-install
experience. Click on Next to proceed.

If the prerequisites do not pass, please review the list
of hardware and software requirements mentioned
earlier in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[56]

10.	 You then have to specify the ODI_Home directory. As for all Java tools, try to
avoid directory names that would contain a space (for that matter, Program
Files is not a good choice, but you can always use the old MS_DOS equivalent
name of progra~1 or whatever eight character name it is on your platform).
Also try to keep the path simple and easy to remember. Click on Next.

The default installation directory is c:\oracle\product\
11.1.1\Oracle_ODI_1. This is also known as your
ODI_HOME directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

11.	 You then have to choose whether to configure an existing Master/Work
repository pair and items in ODI Studio and Agent that are dependent on
the repositories. If you want to manually create the repositories from the
Studio, skip the repository configuration. If you did run the RCU tool to
create the repositories as described earlier, you want to select the Configure
Repositories option to make sure that the Studio and the Agent will be
automatically configured to connect to these repositories. Select Configure
repositories and click on Next to proceed.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[58]

12.	 When prompted for the connection parameters, enter the same values you
selected in the RCU tool. You will have to confirm the parameters for the
database connection string and modify them if needed and re-enter the
database username for the Master repository. Then click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

13.	 You will then have to enter the password that you had entered in RCU for
the ODI Supervisor. This password is case-sensitive, so make sure that you
type it in exactly the same way that you did in RCU. Click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[60]

14.	 You will then be prompted to select your Work repository. If this is your first
installation, you only have one repository available. Click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

15.	 It is good practice for the Agent's parameters to name the Agent after
the machine on which it is installed. Historically, ODI uses 20910 for
the Agent port, but you may want to change this value (particularly if
you install more than one Agent on the same machine). After entering
your values, click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[62]

16.	 You can enter your contact information to be alerted by Oracle if security
issues are identified. Click on Next to proceed.

17.	 If the input fields in the previous step were left blank, a confirmation
dialog is presented to validate that notification of critical security issues
is not desired. Either click on Yes to confirm that critical security issue
notification is not desired or No to provide your contact information,
and then click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

18.	 The Installation Summary will allow you to review the components that
are about to be installed. Click on Install to proceed.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[64]

19.	 The Installation Progress displays a progress bar to show the installation
progress. An important item on this screen is the location of the log file that
is created during execution of the ODI 11g installer. The root directory of the
installation log file(s) is fixed for a given operating system. If you changed
the default installation, the location of the log file does not change. For
example, for Windows, the log file root directory location is C:\Program
Files\Oracle\Inventory\logs. A log file is created each time the installer
is run by appending the date and time information to the string install to
form a uniquely named file. Click on Next to proceed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[65]

20.	 After the file installation progress has reached 100 percent and the related
configuration steps are completed, a screen reviews the different actions that
were performed by the installation program to configure your environment.

21.	 You are essentially done, however, click on Next to proceed.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[66]

22.	 Installation Complete! Congratulations. Note that you can click on Save to
preserve the Installation Configuration information.

The following screenshot shows a sample of the type of information that
will be saved by this operation:

23.	 Finally, click on Finish on the last installation screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[67]

Starting the ODI Studio for the first time
Follow these steps to start ODI Studio:

1.	 Launch the newly installed product for the first time from the Windows Start
menu | Oracle | Oracle Data Integrator.ODI Studio.
The installation program has installed JRockit JDK 1.6.0_24 along with ODI
so that ODI always has the proper version of Java to work with. You will
find this installation of Java under your ODI_Home directory. If you used
the default installation directory on Windows then it will be c:\Oracle\
product\11.1.1\Oracle_ODI_1\jrockit-jdk1.6.0_24.
The ODI Studio and the ODI Agent will be automatically configured to use
this version of Java.

2.	 The ODI splash screen appears as product initialization proceeds prior to the
first product screen being presented. Wait for the splash screen to disappear.

If the splash screen does not appear, check out the file
[ODI_HOME]\oracledi\client\odi\bin\odi.conf
and make sure that the SetJavaHome parameter points to
the jrockit directory.

3.	 Congratulations! ODI Studio initialization has completed and presents itself
to the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[68]

4.	 Click on Connect To Repository to record your connection parameters. You
will have to name the connection itself (so that you can go back and forth
between different connections). In the login screen, click on the + icon to
create a new connection.

5.	 Select a name to identify the connection (in this case My First
ODI Repository).

6.	 Then enter the ODI username (SUPERVISOR—you have no other user
defined at this point) and the password for this user (the same password
that you have entered during the installation process), unless you do not
want ODI to remember this password for you.

7.	 Enter the Master repository username and password, along with the
database connection information. Select the appropriate Work repository
and if you want to always be prompted with this set of parameters, make
this a default connection.

8.	 Click on Test to make sure that all parameters are correct. Then click on OK.
ODI Studio will connect to your repository. You are now ready to get started
with ODI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[69]

Post installation—parameter files review
The following files are worth looking at:

•	 For the Studio, you will find under Documents and Settings\<your
login name>\Application Data\odi\oracledi\ all the configuration
files that contain your login preferences and Studio preferences. If you
need to add JDBC drivers for the Studio, you will need to store them
into the userlib subdirectory.

•	 For the Agent, under the agent \bin directory, you will find the
odiparams.bat file (the same odiparams.sh will exist on Unix)
that defines all the connection parameters for the Agent to connect
to the repository. For instance, C:\Oracle\product\11.1.1.5\ODI\
oracledi\agent\bin. The installation program has also created an
agent_<your_agent_name>.bat file to start the Agent you have
defined with the appropriate parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Product Installation

[70]

Summary
In this chapter, we have reviewed the environment required for the ODI installation
as well as the different steps required to install ODI. If you follow these steps with
your installation, ODI will be installed and up and running with properly configured
Master and Work repositories.

In the next chapter, we will introduce the notion of variables, how to define them,
and how and where to use them. Then we will be ready to go into the actual use of
the product.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables
A very important element in all development environments is the ability to
leave room for dynamic information. Eventually, you will want to use variables
to construct, refresh, and store information as the processes unfold.

This chapter is relatively independent from the others, and can be consulted out
of sequence. You will probably want to review some of its content after you have
covered more of the following chapters. As variables can be used anywhere in ODI,
some of the concepts mentioned here will actually be covered more in depth later.
Introducing variables early will allow you to have a better feel for what they are and
how and where they can be used. Other chapters will reference variables. Feel free
to come back to this chapter for more details on the subject. In this chapter, we will
cover the following points:

•	 How to define variables, and how the different definitions will impact the
usability of variables

•	 How to use variables to process dynamic information, that is variables in
models and interfaces

•	 Using variables to alter the workflows, that is, in Packages and Load Plans

Defining variables
We will now look into defining variables in the following sections.

Variable location and scope
Variables are defined in the Designer navigator either under a given project or
as global objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables

[72]

Project variables can only be used in the project where they are defined. Global
variables can be used in any project. We will see later in this chapter that variables
can be used to make models more dynamic. When using variables in models, we
have to be very careful and make sure that if we use project variables, the model is
not used in another project where the variable is not defined. If a model is shared
across projects, and if that model must be dynamic, then make sure to use global
variables in the model.

The notion of a global variable only means that variables can be
used in different projects. It does not necessarily mean that the
same value will be shared by all projects. The value of a variable
is local to a project and is based on how and when the value is
set. From that perspective, multiple processes running in parallel
will not share the same values after the processes are started.
Each process will operate with its own copy of the values.

Variable definitions
The first element we need to define for a variable is its name. Variable names are case
sensitive. In some places (mappings, models, and so on) you will have to reference
variables by name, so make sure to follow the same standard for variable names
throughout your project. Some conventions that can be used are MyVariableName,
myVariableName, my_variable_name, MY_VARIABLE_NAME.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Another important element, as you can see in the previous screenshot, is the variable
datatype, namely, Numeric, Date, Alphanumeric, (limited to 255 characters) and
Text (unlimited length).

Variables can be assigned a Default Value, and it is always good practice to
describe the purpose of your variables in the Description field—there is never
too much documentation.

The last field in the definition of the variable allows you to define how much history
you want to keep for the values of the variables. You can set it to No History (do not
remember anything past the execution of the process), Latest Value (only remember
the last value that was used, and overwrite that value when another value is taken),
or All Values (save all the values ever taken by the variable).

Version 11.1.1.6 of ODI adds the ability to create Secure Variables—variables
whose values will never be visible in the generated code (think passwords for
instance). These variables will obviously have no history.

Refreshing variables
One key aspect of variables is that they can be associated to an SQL query as long as
this query returns a single value (no lists or result sets are allowed). At runtime, it
will be possible to Refresh the variable to run the associated query and the returned
value will automatically be assigned to the variable—all in one operation. We will
see this in more detail when we look into the use of variables.

To define the query associated to a variable, select the Refreshing tab of the variable,
select the name of the logical schema where the query will have to run, and simply
type the query as you would in any SQL editor. An example of a query would be:

Select sysdate from dual

Note that you have to select a Logical Schema in all cases,
even in the previous example. The Logical Schema will define
which server you are connecting to as well as which credentials
to use to connect to that server.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables

[74]

Also remember that this query must return a unique value.

The icons you can see on the top right of the query input box will help you build the
SQL query. The icons are explained as follows:

•	 The pencil gives you access to the expression editor, that will guide you with
the syntax of the native SQL for the database that hosts your schema

•	 The green checkmark validates the query with the database (ODI actually
sends the query to the database for validation at this point)

•	 The curved arrows allow you to run the query and store the value of the
variable in the history of values for the variable if you chose to keep the
history (all values or latest value)

Even though you can store a value in the history at development
time, you have to keep in mind that when you are in a production
environment, you will not have the opportunity to preseed the
history of your variable. We will see this again later, but whenever
you are working with variables, you will have to make sure that
they are properly declared and that they are assigned a value
before you start using them.

Variable history
Once variables have been used, and if they have been defined to hold either the Last
Value or All Values ever taken, this history will be available in the History tab. You
can remove elements of the history if you so wish by clicking on the red X at the top
right of the screen. This view can be extremely helpful for debugging purposes or for
analysis purposes.

Using variables for dynamic information
Let's see how we can use variables to process data dynamically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Assigning a value to a variable
Before we can use a variable, we will have to make sure that a value has been assigned
to the variable, as is the case with any programming language. There are multiple
ways to assign a value, but in all cases the values will have to be assigned in a Package.
The package steps defined in this chapter will have to be executed before the interfaces
or model operations that make use of the variables.

When you drag-and-drop a variable in a Package, different actions will be available
on the variable.

We will review here the different actions (or Types, as they are called in the tool) that
allow us to get the variable value. As you switch from one type to the other, ODI will
change the graphical representation of the variable in the Package so that you know
what action is selected without having to look into the details of the step.

Setting a hardcoded value
The Set Variable type will allow you to hardcode the value that you want to be
assigned to the variable. Remember that this variable may be used in different places,
and ODI does not know what you have in mind for this variable. If the variable will
only be used in your mappings, and is an alphanumeric for instance, then you are in
charge of adding the necessary quotes around the text that you define.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables

[76]

The following values are all valid assignments:

Values Where and how to use such values
TEXT If you use this syntax in mappings, remember

to add quotes around the variable name
'TEXT' This variable can be used as-is in the

mappings, but cannot be used outside of
mappings (models for instance)

2 This is a numeric assignment
'3' This is a string assignment
'02-JAN-2011' This is a date assignment (depending on the

database you are working with, you may still
have to translate this to an actual date with a
to_date function or an equivalent)

#GLOBAL.MyVariable Assign the value stored in the global variable
MyVariable

#MYPROJECTCODE.MyVariable Assign the value of the variable MyVariable
located in the current project

We will take a more detailed look at variable referencing a little later in this chapter.

Refresh Variable
The type Refresh Variable will simply run the query associated with the variable in
its Refreshing tab, and will assign the returned value to the variable. If you've asked
for any level of history, this step will take care of storing the value for you. These
values can be found in the History tab of the variable.

Passed as a parameter (Declare Variable)
The type Declare Variable will allow you to pass the value of the variable
as a parameter to your scenario. The value can be set through the graphical
interface—when you run your scenario, ODI will prompt you for the appropriate
values. The parameters can also be set from a command-line interface if you
decide to execute your processes from an external component. Scenarios can also
invoke other scenarios. In that case, the appropriate variables and values would
be passed as parameters in the definition of the scenario call. You would need to
look into the definition of the ODI tool, OdiStartScen, for more details on this
type of approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

Referencing variables
When you start using variables in your interfaces and models, you will need to
reference your variables. Variables are referenced with a # sign, followed by the
name of the variable. ODI will first look for a definition of the variable in the project.
If the variable is found there, then this variable is used. Otherwise the corresponding
GLOBAL variable will be used. If you want to make sure that a global variable is used,
you can prefix the variable name with #GLOBAL, for example #GLOBAL.MyVariable.

Similarly, you can prefix the variable name with the project code, which is what ODI
will do for you anyway when it generates the code of an interface.

The project code used to prefix variables is different from
the name of the project. To check the actual code for a
given project, double-click on the project name to edit its
definition and read the associated code name. By default,
project codes are the uppercase version of the project name,
without spaces.

Variables in interfaces
Now that we know how to assign a value to a variable and how to reference it,
we can use variables in our interfaces.

You can use a variable in any place where you would be entering code in your
interface (for example, mappings, joins, and filters). There are even some Knowledge
Module options that can accept variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables

[78]

All ODI will do at runtime is to replace the variable name with the current value for
that variable. So if the value for your variable dtLastRunDate is 29-FEB-2012 and
the mapping for your column is:

sysdate – '#dtLastRunDate'

the code that will be generated is as follows:

sysdate – '29-FEB-2012'.

Note, that since the variable value did not contain any single quotes, we added them
in the previous mapping around the variable name to ensure proper code generation.

You may have noticed that in this example, we are not using
the project code. The first reason is that in an interface we
can only use a variable from the current project—so the
project code will be automatically added by ODI. But beyond
this convenience, it will allow us to validate directly in the
generated code that ODI did recognize the variable name. If
the project code is not properly added by ODI in the generated
code, it means that either the variable is not defined in the
project, or it is misspelled—and here pay particular attention
to the case sensitivity of variable names.

When you look at the generated code, you will not see the actual variable value, only
the variable name will be generated. This name will be substituted dynamically at
runtime with whatever value is assigned to the variable at that time.

Version 11.1.1.6 of ODI introduces a new Log Level, Log Level 6, for code execution.
The only purpose of this log level is to offer the ability to toggle back and forth
between variable names and variable values. The toggle button is at the top right
corner of the log window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

You will only be able to modify the code when the variable name is displayed,
but you can always copy the code with the variable value if you want to use it
somewhere else.

Since ODI 11.1.1.6 also introduces Secure Variables, the value for
Secure Variables will never be displayed in the operator logs even
if you try and toggle from variable name to variable value.

Variables in models
Variables can also be used in models. This will be extremely useful when we start
dealing with flat files. It is very common for flat file feeds to be named after the
extraction day, the ID of the batch run that generated them, or the server that they
came from. In all cases, the same file structure, requiring the exact same processing,
will always appear with a different filename. Using a variable for the filename will
solve the problem of handling a dynamic name.

When you edit the definition for a filename, you can use your variable in
the Resource Name. The Name can be set to some meaningful name in your
environment, telling you exactly which file type you are referring to. ODI will
show both names in the model tree.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables

[80]

Keep in mind that using variables in the resource name will present some constraints
at development time such as you can only process that file if a value has been
assigned to the variable. From then on, it becomes more difficult to test the interfaces
that use this file (they must be part of a Package where the variable is defined,
and can only be executed as part of the Package) and it is not possible to view
the content of the file (which file do you want to point to exactly?). For all these
reasons, it is actually easier to start working with a predefined filename and once
the development work is done and tested, you can look into making your code more
dynamic and use a variable for the filename.

We spoke of using a variable for filenames here because it is
the most common case, but you can absolutely use variables
for table and view names as well—the product will behave
in exactly the same way.

Variables in topology
Just for reference, you should know that it is possible to use variables as part of the
Topology definition as well. But the use of variables in that part of the tool is a lot
more advanced and would require us to cover concepts that are far beyond the scope
of this book. Just keep in mind that it is possible though, with enough knowledge
and care, to use variables in other areas than the ones we are covering.

Using variables to alter workflows
We will now learn how variables can be used in Packages and Load Plans.

Packages
Variables can be used in Packages for multiple reasons. As we have already seen,
variables are assigned different Types or actions when they are added to a Package.
We have already discussed the ability to Declare, Refresh or Set variables. Another
type is to Evaluate a variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

The evaluation of a variable will allow you to choose how you want to proceed—the
expression that is evaluated will return True or False. To continue with the next
step of your Package, you will simply use what would otherwise be the Ok (which
is represented by a green arrow in the ODI Studio) and Ko (which is represented
by a red arrow in the ODI Studio) arrows—True being the green arrow and False
being the red one. Variables can be compared to literals or to other variables. When
comparing variables to one another, pay attention to the variable datatypes, and do
not forget to prefix the variable name with the project code.

Using variables, you can easily define loops in your scenarios with the variables being
set, refreshed, and/or evaluated to define the values and exit rules for the loops.

You do not want to have infinite loops in the design of your
solutions. An infinite loop means that your process would
never end, which means that the associated logs will always
be "running" and will never be purged. Make sure that you
always have an exit in your loops and invoke your scenario if
you want it to run again. The next iteration of the scenario will
be a new process that will allow administrators to purge the
logs of the previous iteration whenever they need to do so.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables

[82]

Load Plans
Load Plans, like Packages, can take advantage of variables.

Load Plans are objects designed for operators to orchestrate their scenarios.
Even though it looks like you can add other objects apart from scenarios to
your Load Plans (interfaces and variables), behind the scenes ODI generates a
scenario for each object that you add to the Load Plan. This is very important
for variables—if you modify the definition of a variable after you have added
it to a Load Plan, you will have to regenerate the associated scenario for the
Load Plan to know about the new definition.

The purpose of the use of variables in Load Plans is to allow for very flexible,
multi-choice branching. One of the types of steps you can add to a Load Plan
is a Case step where a variable will be evaluated. You can then choose what the
different cases will be with subsequent When steps.

In the previous screenshot, we can see the beginning of a Case evaluation at the
top portion of the screen, and the bottom portion illustrates the possible choices
available for the When steps.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

Summary
You should now be comfortable with the notions of variables in ODI and how to
leverage them to operate in an environment that can be extremely dynamic.

We have seen in detail the following elements:

•	 How to create variables, and how the different definitions impact the
usability of variables

•	 How to use variables in models and interfaces so that the same code can
be used even in a dynamic environment

•	 How to use variables in Packages and Load Plans as decision points or
branching points

We can now look into the different steps required to build your processes, from
connectivity to the source and target systems, to the required transformations and
loading techniques. As we cover these elements in the following chapters, keep in
mind that you can use variables in most places.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and
Knowledge Modules

We know that the primary use of ODI is to move and transform data from one place
to another. So in this chapter we'll be delving a bit deeper into the activities and
concepts governing the definition and use of source and target datastores and the
mechanisms used to move data between them.

First of all we'll take a look at how you define and configure data servers and
schemas and how to reverse-engineer them into ODI models to provide sources
and targets for interface flows. Then we'll have a look at some simple, but common
interface flow examples, and finally we'll revisit Knowledge Modules and the roles
they play in data flows. The activities and concepts we'll be covering in this chapter
include the following:

•	 Defining Physical Schemas using the Topology Navigator and linking
them to Logical Schema names via Contexts

•	 Reverse-engineering metadata from database and database-like
systems into ODI models using Designer Navigator

•	 Reverse-engineering data from non-database systems, creating
structural metadata from scratch, and enriching existing ODI
models and their metadata

•	 Understanding the main participants and mechanisms in a simple
ODI data flow

•	 Identifying core Knowledge Module types for simple data movement
and understanding their involvement in the process

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[86]

•	 Choosing and importing specific Knowledge Modules into a data
integration project

•	 Understanding the high-level structure of a Knowledge Module
•	 Choices available for customizing the behavior of a Knowledge Module

Defining Physical Schemas, Logical
Schemas, and Contexts
In order to access or populate data, ODI needs to know where that data resides. The
physical locations and connection criteria for servers and the Physical Schemas are
defined in the Topology Navigator, under the Physical Architecture. The connection
details of the servers and schemas will vary from environment to environment
(development environment, testing environment, production environment, and any
other environment you have) but the data on these servers will be organized the
same way. To shelter developers from these implementation variations, developers
will only have to know about one name for all environments, called the Logical
Schema (think of it as an alias for all physical connections). A Context will be created
for each environment, so that when needed, the Logical Schema can point to the
appropriate physical connection. We will now see these elements in more detail.

Defining physical data servers
Once we have connected to the ODI Master and Work repositories, we begin by
selecting the Topology Navigator to gain access to the Physical Architecture. Here
we will find a list of technologies. Under each technology, data servers will be listed.
Data servers will then list their own physical schemas. By default, all supported
technologies are listed in both the Physical and Logical Architecture sections. This
is helpful when adding the first server of a new technology, but as shown in the
following screenshot, the display can be simplified to show only "used" technologies
by using the Hide Unused Technologies option in the drop-down menu from the
tab header of the Topology Navigator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

To add a new schema to ODI's Physical Architecture, we would first need to add
a New Data Server in the Oracle technology section where we will define the
particular Oracle instance.

Pop-up menus and double-clicks in ODI
Most operations on objects in ODI, whether in the Topology
Navigator or in the other ODI Studio components (Designer,
Operator, or Security) can be accessed via pop-up menus that
are activated by a right-click on the object. For many objects
the default editor can be opened by double-clicking on the
object in the navigator tree view.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[88]

The editors in ODI Studio, such as the Data Server editor shown in the following
screenshot, have a common look and feel, with sidebar tabs on the left and
occasionally subtabs across the bottom.

The Definition tab of the Data Server editor shows the data server name and the
username/password credentials that will be used by ODI Studio and the runtime
agents to log on to the server.

Choosing the proper username to log in
It is usually recommended to create a dedicated user to log in.
There will be many benefits to this. First, all activity from the tool
will be easily monitored by the DBAs since it will all be under
one single username. Then from a permissions perspective,
you will be able to make sure that the tool has all the necessary
privileges, and only the necessary privileges. These can be (and
probably will be) different from all existing users' privileges.

This panel also provides the user with the ability to fine-tune the data acquisition
performance by adjusting the Array Fetch Size and the Batch Update Size, which
control the number of records acquired per batch and the number of records written
when ODI uses JDBC to transfer data from source to target.

It's a good idea to use a naming convention for data server references so that it is
easy to tell at a glance which physical data server entry within ODI corresponds
to which server in the physical environment. A fairly common naming convention
for Oracle data servers uses the Oracle System ID (SID) in conjunction with a
hostname, such as ORCL_on_myhost. Alternatively, you might choose to use the
construct, <technology>_<purpose>_<environment>, such as ORCL_SALES_DEV.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

Maximizing and restoring editors
If there is ever a need to maximize an ODI editor to the full extent
of ODI Studio's window, we can do this by double-clicking on
the editor window's header tab (another double-click on the tab
header restores it to its previous size). Don't forget that to close
a tab you must hover over the upper-right corner of the tab and
click on the X that appears.

The JDBC tab shows the driver class name and connection URL used to connect
to the data server, in conjunction with the credentials on the Definition tab.

This information can either be typed in directly if known, or can be built using
assistants via the search icons which are to the right of the fields (the one next
to the JDBC Url field in the previous screenshot is highlighted).

Do no use "localhost" in the JDBC URL
Remember that ODI is a central repository-based system and
will be used concurrently by any number of developers and/or
runtime agents, all running on different hosts. For each of them, the
hostname localhost will refer to a different machine (the system
where they are executed), so a resource which may be local to the
person creating its reference in ODI is unlikely to be local to other
developers and agents. Therefore, it is always safer to use an explicit
hostname or IP address when referring to resource locations, even if
it happens to be local at the time of defining that reference.

Once the JDBC driver class and URL information has been entered, we can test
the configuration by clicking on the Test Connection link in the editor's header
bar. After we choose which physical agent will be used to perform the test (the
default "no agent" will use ODI Studio as the agent), ODI will then test the
connection for the new server.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[90]

The Definition tab has the option to specify whether the data
server's connection details are held in an external LDAP server
that ODI can access via JNDI (Java Naming and Directory
Interface). If you select the JNDI checkbox in the Definition
tab, then the JDBC tab will be changed to JNDI so that you
can enter the proper connection information for your LDAP
server. We won't go into this capability within this book, but it
is a mechanism that can be used to avoid maintaining security
credentials within the ODI repository.

Defining Physical Schemas
Whenever we create and save a new data server in the ODI Physical Architecture,
we are prompted to create a reference to a Physical Schema located on that server,
since it is the schemas in a data server that hold the business data of interest. An
ODI data server contains one or more Physical Schemas. One of these will be defined
as the default schema. The first schema that is created is selected as the default
schema if you do not change the selection. It will be important to remember this if
you eventually delete this schema, as some tables (error summary for instance) are
automatically attached to the default schema.

Data schemas and work schemas
Whenever ODI is performing its data integration work, there will be times (such as
when staging some data in a flow or when diverting error records out of the main
data flow) when ODI will use temporary "work" tables. To allow these work tables to
be managed separately from production business data, ODI introduces the concept
of a "Schema" and a "Work Schema" for each Physical Schema. The Schema holds the
business data while the Work Schema holds the temporary data tables created and
managed by ODI. Temporary tables created by ODI will always have a $ sign in the
beginning of their name (for example, E$_xxx, I$_xxx, C$_xxx) This pairing of work
and data schemas is specified within the Physical Schema panel, as defined within a
data server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

The Physical Schema editor shows two drop-down list boxes from which we can
select the underlying database schemas that are used to hold the business data
(Schema) and to hold any work tables (Work Schema).

It is quite common for source and target system administrators
to insist on the separation of all ODI work artifacts (the $ tables)
from the business schema objects. It is for this very reason the
ODI provides the ability to specify two distinct schema locations.

ODI will automatically list the available schemas for the servers you are connected
to, as long as it is possible to do so. This means that:

•	 Based on the privileges of the user you have used to connect to the server,
you may not see all schemas (and in some cases you may not see any schema
at all; this is typical when the user does not have enough privileges).

•	 Some technologies do not have the necessary "infrastructure" to list the
possible entries; flat files would be an example, where the directory names
must be entered manually. You can actually type text directly into the
drop-down list.

•	 Some JDBC drivers (luckily there are less and less of these) will not know
how to list schemas. If you encounter one of these, you will have to type
the schema names directly into the drop-down list.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[92]

A few recommendations for schemas and work schemas are as follows:

•	 Even if you know the schema name, make sure to spell it exactly as it appears
in the ODI drop-down. In particular, JDBC is case-sensitive for the schema
names, and using the wrong case would prevent you from seeing tables in
your database, which would be very inconvenient.

•	 Always use a dedicated schema for the Schema (Work Schema). One very
good practice is to use the schema owned by the dedicated user you have
created to connect to the server. Since ODI will create and delete temporary
tables, owning the schema will make it easier to assign privileges.

Just below the schema selection are two sections—one shows the prefixes ODI will
use when creating its work tables; the other shows the naming conventions ODI will
use when accessing local and remote objects (for example when using partitions or
database links on an Oracle server). Modifying these values is quite rare and should
only be considered if required in your environment for technical reasons (think of
environments where $ signs would be problematic for instance).

Defining Logical Schemas and Contexts
A Physical Schema definition needs to be associated with a Logical Schema name
(an environment-independent alias or nickname) which will be exclusively used to
build ODI models and, subsequently, interfaces and other data integration objects.
The association of the physical world to the logical world is achieved via a "Context".

By default ODI delivers a single Context called Global, but we
can create as many additional Contexts as needed (for example
development, test, staging, and production). In this way we can link
our data models and data integration objects to as many similarly
configured environments as required for managing the data
integration lifecycle and for deploying our data integration solutions
with minimal changes as we move from one environment to another.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

When you create a new Physical Schema, you can define the Context and Logical
Schema that it is associated with in the Context tab. Alternatively, you can ignore
this tab when you create the Physical Schema, and match your Logical Schema with
a Context and Physical Schema either in the definition of the Logical Schema, or in
the definition of the Context.

We will see later in this chapter the different views, from a Context or Logical
Schema perspective.

Entering field values in ODI
It's best to hit the Enter key after entering values in ODI data fields
to make sure that the newly entered value has been recognized and
accepted. This was true of ODI 10g and continues with ODI 11g. If
you ever think that ODI is ignoring any changes or new entries in
field values, remind yourself to hit Enter.

A new behavior in ODI 11g brought in by the use of the JDeveloper IDE framework
is that multiple editors can now be opened simultaneously and accessed via different
tabs. The current content of each of these tabs can be saved at any time by pressing
the appropriate "disk" icon located in the upper left corner of the ODI Studio. Once
saved, each of these tabs can safely be closed by clicking on the X that appears if you
hover the cursor over the right-hand side of the editor's title tab.

The creation of a Physical Schema definition together with the Context-based
association to a Logical Schema name completes the basic work necessary within
the Topology Navigator. We are now able to make use of these schema structures
as we build our data models, interfaces, and other ODI objects.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[94]

Non-database technologies
Before we leave the Topology Navigator, let's take a quick look at two non-database
technologies and data servers to see how their definitions and configurations differ
from those for a SQL database:

•	 FILE
•	 XML

Flat Files
ODI comes pre-configured with a File data server called FILE_GENERIC. In the
Data Server editor for this technology, the Definition tab shows the data server
name, but the Host, User, and Password fields are empty. The JDBC tab shows
that a file accessed by ODI uses a JDBC driver (which is delivered as part of the
ODI product).

However, the JDBC Url field also makes no mention of a hostname or network
protocol. This indicates that the ODI file JDBC driver can only access files which are
visible by the program using the driver. So by implication, they must be local to the
driver itself. If the JDBC driver is used by the ODI Studio, then the file must be visible
to the Studio. If the driver is used by the ODI Agent, then the file must be visible to
the Agent (either in the form of a local file or files located on a shared-file system).
This is something to bear in mind when designing data flows that involve flat files
and placements of ODI Agents. ODI 11g has several capabilities for transferring
and copying files across a network, but when it comes to reading or writing file data,
these files have to be accessible to the reader or writer. This will be true whether you
decide to load files with JDBC or database native utilities (which ODI can leverage as
well)—files must be visible to the loaders and writers.

Using file data servers also means that testing the connection is largely meaningless
apart from checking that the ODI file JDBC driver is correctly installed and accessible
by ODI Studio.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

In the Physical Schema editor for a file data server, we can see that the Definition tab
has the same Schema and Work Schema fields as we used before, but this time these
fields are Directory references, not database schema references. Here we must replace
the <Undefined> text with the location(s) of our choice, such as c:/po/input as shown
in the following screenshot:

Forward slashes are used as directory separators as these are
the platform-portable form in Java—even if the initial c: isn't. A
backslash character is treated as an escape character by Java and
will create problems if used in the Directory (Schema) input field.

Even though an ODI Physical Schema has a slightly different meaning when dealing
with filesystems (it's a file directory, not a host or "server" instance), we must still
link our Physical Schema to a Logical Schema via the Context tab, just as before.

XML files
Next we'll take a quick look at how XML files are handled because these are slightly
different from flat files.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[96]

Once again the Host, User, and Password fields in the Definition tab of the Data
Server editor have no effect and can all be left empty. Similarly to flat files, only XML
files that are accessible by the executing agent (including the agent embedded in ODI
Studio) can be processed. When we click on the JDBC tab, we can click on the search
icon next to the JDBC Driver field and accept the default driver shown (based upon
the technology being used, this driver will be pre-selected to ODI JDBC Driver for
XML). The JDBC tab indicates that ODI's XML file access will also use a JDBC driver
(which of course, is already supplied as part of the ODI product).

When we click on the search icon next to the JDBC Url field, we see that an example
URL template is provided with a mandatory filename substitution required and a
number of optional connection properties that can be added at the end.

These options set the access behavior, such as whether the file is to be opened
as read-only, whether case-sensitivity is to be used, and so on. A full list of URL
options is explained in the ODI 11g documentation in the Connectivity and Knowledge
Modules Guide for Oracle Data Integrator (http://download.oracle.com/docs/cd/
E23943_01/integrate.1111/e12644/toc.htm).

If we accept the example URL template by clicking on OK, it is inserted into the
JDBC Url field where we can then modify the property values to suit our needs.
Two properties that we'll pick out from the dialog box are the values assigned
to f and s, but we'll also highlight a third one, namely d. The meaning of these
properties is as follows:

•	 The f value is the full path and name of the XML file which we will be
accessing. From this we can see that although most data servers correspond
to database instances, servers, or a complete file directory, an XML 'data
server' however corresponds to a single XML file. (If you prefer to be more
descriptive, the f= assignment can be replaced by file=.) As an example,
we could use file=c:/po/input/MarketInc_po_001.xml.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

Hardcoding a filename is not always necessary as a variable
is often used in more advanced deployments. This makes the
driver much more dynamic.

•	 The s value is the name of the schema into which the XML data will be
loaded. (Here again, the s= text is a more explicit alternative of schema=.)
In the absence of any other properties being set, this will be a set of in-
memory structures that ODI will refer to by this schema name. The schema
name must always be uppercase and must not match any XML tag names.
It is also highly recommended to keep the schema name short as all tables
created in the temporary structure will contain this string. So for example,
we might choose to use a schema named PO.

•	 The third property that we'll cover briefly here is the d (or dtd) property.
This optional property is used to set the path and filename of a DTD or XSD
file which defines the structure of the XML file being accessed. In the absence
of this property, ODI will derive a DTD file from what it finds in the XML
file. However, it will also designate all discovered fields to be mandatory and
will not cater for fields that are optional and missing in the file referenced in
the file= property. In the following example, we are setting the value to
c:/po/xmlschemas/po.xsd.

If we use these suggested property values, our JDBC settings will look similar to the
following screenshot:

There is a Test Connection link in the tab header. Unlike flat files, when dealing
with XML data server, this test performs a very useful action by checking that the
property settings we have specified all work (for example the test would verify that
we have an XSD file which accurately describes the structure of our XML file). If we
execute the test accepting all default execution settings, we should see a Successful
Connection message.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[98]

To make sure that the connection works, the JDBC driver
will attempt to load data from the XML file in its in-memory
database schema. Once the data is loaded in memory, the
driver will not retrieve data from the file anymore, unless
explicitly asked to do so. The driver comes with a large array
of commands and configuration parameters that are worth
investigating if you want to be serious about XML integration.

When creating a new ODI Physical Schema based on the XML server, we can select
our previously specified schema name (PO) for both Schema and Work Schema
using the drop-down lists in the Physical Schema editor. On the Context finger-tab,
we will add a new association, via the Global context, to a Logical Schema name
(in the following screenshot that name has been chosen to be PurchaseOrder).

While we still have the Topology Navigator open, we can take a look at the Context
and Logical Architecture views based on the different examples we have seen so far.

If we expand the Contexts pane in the Topology Navigator, we can see that we only
have one Context defined, namely, Global. If we double-click on the Context name
to open the Context editor and then choose the Schemas tab, we'll see a list of all the
logical-to-physical schema mappings within that Context. At the top of the list there
are some system-created schemas, but lower down will be any of the schemas that
you would create. In the following screenshot these additional schemas have been
highlighted with a red box.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

Alternatively, by expanding the Logical Architecture view we can see for each
technology, all of the Logical Schema names that have been defined so far.
(Remember, the Hide Unused Technologies option is often useful here.)

By double-clicking any of these Logical Schemas we can see the associations,
by Context, to the various Physical Architectures.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[100]

So far we've seen:

•	 How references to physical servers and schemas are set up
•	 Some of the key aspects and differences between references for

database servers, filesystems, and XML files
•	 Three different views of the topology information:

°° The Physical Architecture view, which shows the most detail
°° The Context view, which shows all Contexts and all of the

logical/physical associations for a given Context
°° The Logical Architecture view, which shows all the Logical

Schema names and how each Logical Schema is mapped to
Physical Schemas listed by Context name

Next we'll see how all of this topology information is abstracted into ODI models
and how individual datastores (tables, files, JMS queues, and so on) are made
available for data flow designs.

Reverse-engineering metadata into
ODI models
Before we can access and integrate data with ODI Designer, we need to create
"models" based on the Logical Schema definitions we have in the topology. ODI
models are abstracted to be independent of the physical data server type (database,
file, JMS queues and topics, and so on), so they will have a common look and
feel despite having dramatically different physical representations. This greatly
simplifies their use as sources and targets and is a major benefit of using ODI.

Although we can manually create an ODI model, including its datastore definitions,
constraints, and relationships, the normal and recommended method of creating
models is by reverse-engineering the structural metadata directly from the databases,
files, and other data resources. Sometimes a combination of both activities is used
whereby the developer begins with the reverse-engineering process, then augments
the captured metadata with additional metadata details (such as referential integrity
information that might not be represented within the database).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

The term metadata is used to refer to data that describes the
structure of objects such as tables, columns, views, indexes,
constraints, relationships, and so on.

ODI can perform reverse-engineering via several different methods depending
on the technology involved and the degree of reverse-engineering required. The
following figure shows the three main methods of reverse-engineering, namely,
standard, customized, and file-specific.

Model

Model

Model

ODI Work

Repository

ODI

Delimited format

Fixed format

COBOL copybook

File Specific

Reverse Engineering

JDBC RKM

Database Objects

System Tables

Database

System

Standard

Reverse

Engineering

Customized Reverse

Engineering

Let's take a brief look at each of the three methods.

Standard reverse-engineering
Standard reverse-engineering is performed by ODI by internally issuing
metadata-related JDBC calls to the driver for the specified technology and
then processing the responses to build up a metadata picture of the data
structures contained within the physical system. This is the most common
form of reverse-engineering used with database systems.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[102]

As we saw previously, a Logical Schema for a database technology translates to a
physical database schema for a given Context. So ODI gives us the choice either
to reverse-engineer the entire physical database structure or only selected objects.
These choices come in the form of filter checkboxes and individual object checkboxes
available in the Selective Reverse-Engineering tab.

The previous screenshot shows that a reduced set of tables has been selected for
reverse-engineering, which can be initiated by clicking on the icon on the left-hand
side of the header bar within the model editor tab.

Custom reverse-engineering
There will be cases where JDBC metadata calls will not be sufficient to import
metadata from the system you want to reverse-engineer; some JDBC drivers are
too limited and do not support this feature. Some systems would be too complex
to reverse-engineer solely based on table names (ERPs, for instance, typically have
tens of thousands of tables).

For such cases, Reverse-engineering Knowledge Module (RKM) may be needed
to directly access the system tables of the underlying system in order to extract
the metadata for the ODI model. ODI ships with a series of RKMs for applications
(E-Business Suite, PeopleSoft, JD Edwards, SAP, Siebel, and Hyperion) as well
as for some databases. As seen in the following screenshot, custom RKMs
often include special options that are used to fine-tune the actions of the
reverse-engineering process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

File reverse-engineering
The third method for reverse-engineering is limited to flat files. This is because there
is no "intelligence" in the file system and the ODI JDBC driver for flat files cannot
interrogate any central system on the structures of a group of files in a specified
directory. Instead, individual files are reverse-engineered one-by-one. ODI has
wizards to assist with this activity and these Wizards do interrogate each file that
is being reverse-engineered. We begin by specifying whether a file is fixed format
or delimited, what the delimiters or column boundaries are, and whether there are
any column header lines at the beginning of the file (and if so, how many). After
completing these basic definition steps, the wizard will perform the majority of the
metadata creation.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[104]

Before closing the file wizards, we also have the opportunity to specify or alter
column names, sizes, datatypes, and formatting information (for example, dates)
that may have been read or inferred from the file.

It will be important in particular to review the size of the fields
reverse-engineered by the wizards. There is no way for the
wizard to ensure that the sizes are accurate for all iterations
of the file, and defining column sizes that are smaller than the
actual data will result in failing processes. Defining columns
that are too large will have no other impact than wasting space.

XML reverse-engineering
Reverse-engineering an XML file is very similar to reverse-engineering a set of
related database tables. If the ODI JDBC Driver for XML files is able to use a DTD
or XSD file that describes the contents of the XML file (in other words, the DTD
or XSD holds the metadata for the XML file), then the XML driver will use that
metadata to build a model of datastores linked in the same hierarchy as the tag and
attribute nesting within the XML file. If no such DTD or XSD is available, the driver
will interrogate the whole XML file and build a new DTD file based on what it
discovers. The main difference between a model based on an XML file and one based
on database tables is that the ODI XML driver adds additional "columns" to the
modeled datastores to enable the nesting hierarchy of tags to be preserved and also
to record the order of data entries in the XML file.

Some technologies, such as JMS do not support any kind of
reverse-engineering. This is because the contents of a JMS
message (within the envelope and addressing constructs)
are not specified by the JMS system, but rather by the sender
of that message. In this case we can use either a flat file or
XSD file that matches the definition of the structure of the
messages. Then copy these definitions in your JMS model.

We now know the high-level basics of how to create ODI models and datastores
based on the structures held in database, flat files, and XML files. They are as follows:

•	 Models are based on Logical Schemas, which must be associated
with a Physical Schema for reverse-engineering in order to extract
the schema structure.

•	 There are three main methods of reverse-engineering, namely, simple,
customized, (with customizations abstracted into a technology-specific RKM)
and file-specific methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

•	 We can make a selection from the available tables, views, and other objects in
a database to limit what we import into our ODI model, rather than always
modeling the complete schema structure.

•	 Datatype and column name metadata for flat files can be enriched and
modified during the reverse-engineering process.

•	 Not all technologies support reverse-engineering and that manual creation
of the model's metadata will be needed in those cases.

•	 ODI's XML file driver reverse-engineers files using DTD or XSD documents
to provide the metadata and creates a hierarchy of linked datastores for
each file processed, with a file equating to a Logical Schema. If no DTD or
XSD documents are available, the XML driver will derive the structure by
scanning the entire XML file.

Examining the anatomy of the
interface flow
Once we've created all our definitions and references for the data that we want
ODI to transform and transport, we can focus on what precisely it is that we want
to take place in terms of data mappings and transformations, that is we can look
into creating ODI Interfaces. We have already seen that ODI uses an E-LT approach
and architecture, but what does that mean in detail? What actions are performed,
where, and at what time during the overall flow, and what components will
perform those actions?

In this section we will walk through three very simple yet common ODI data flows
to examine and explain these aspects of ODI's operational behavior.

ODI Interfaces are the objects used to transform and transport data from one or
more sources to a target, so each of these flow examples will be implemented in
a separate interface.

Example 1: Database and file to database
This example forms the foundation of many ETL jobs. It's a simple case of loading
data into a data warehouse or data mart to make it ready for other systems such as
Enterprise Resource Planning (ERP), business intelligence analysis and reporting,
Customer Relationship Management (CRM), Master Data Management (MDM),
or archiving.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[106]

Here we'll consider taking data from two related source tables in a database, joining
them with some additional data from a file, transforming the data and "upserting/
merging" the resulting transformed and enriched data into a single table within our
target database. The two source database tables hold orders and orderItem entries,
with the file containing a list of pricingCorrection lines by product. The target table,
orderSummary, is used to hold the total value for each closed order after the pricing
corrections have been applied.

MySQL

Oracle

orderSummary

Flat File

pricingCorrection.txt

Filter, join,

correct price

and

sum value

orders

orderItem

The previous figure shows that information must be extracted from two MySQL
tables and the flat file, and then filtered for closed orders only. The information from
the three data sources must be joined so that order items are associated with the
parent order and that any applicable price corrections are applied correctly. The
value of each order must then be calculated and the summary values added to the
Oracle data mart.

It makes sense to use the power of the MySQL database to perform the filter for
closed orders and the join of orderItem entries to the correct orders: ODI allows
exactly that to be done. However there is still a requirement to apply the pricing
corrections. We achieve this by joining the pricingCorrection data with the
resulting order information, then calculating the summary values by product, and
performing any final format transformation needed to add the data into the target
Oracle data mart table. The work comprising these intermediate steps will be done
in an ODI-defined staging area (work schema), co-located on the Oracle server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

As discussed in the Defining Physical Schemas section of this chapter, the actual
physical location of temporary ODI artifacts will be dependent on how the
Physical Schemas were configured. We strongly advocate a separate schema
for these staging tables.

So we need "something" that will:

•	 Issue the join-and-filter query to extract the MySQL data into the staging
area in Oracle

•	 Extract the data from the flat file and upload that into the staging area
•	 Combine the data in the staging area and upload it from there into

the target data schema

In ODI, this "something" comes in the form of Knowledge Modules:

•	 Loading Knowledge Modules (LKMs) load the source data into
the staging area

•	 Integration Knowledge Module (IKM) will integrate the data from
the staging area into the target schema

MySQL

orderSummary

Flat File

pricingCorrection.txt

orders

orderItem

LKM

LKM

Oracle

IKMSS_0

SS_1

In the previous figure, we see that SS_0 and SS_1 (SS literally stands for Source
Set) are representations of work tables created by ODI in the staging area to enable
the intermediate work of summarizing the data to be performed. These tables will
be automatically created by ODI, and deleted when they are not needed anymore.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[108]

Knowledge Modules are of different types that relate to the source and target
technologies being used and to the methodology chosen to move the data. The
choice of which of the available KMs is best often becomes a function of system
performance or technology-based advanced features. For instance, loading data
using an Oracle Exadata system, selecting a Knowledge Module that leverages
"External tables" would be by far more efficient than any other technique. Other
databases will have their own utilities that will be leveraged by ODI as well, for
example, bcp for Microsoft SQL server or Sybase, nzload for Netezza, and the list
of utilities goes on with the list of databases. Using Oracle's MERGE functionality is
usually more efficient than using a standard INSERT/UPDATE.

In our example, to filter, join, and load the data from MySQL into the staging area
in Oracle, the Loading Knowledge Module (LKM) we choose might be LKM SQL to
Oracle. For loading the flat files, our choice might be the generic LKM File to SQL,
but it could just as easily be one of the Oracle-specific KMs for loading file data, such
as LKM File to Oracle (SQLLDR) or File to Oracle (EXTERNAL TABLE).

The Integration Knowledge Module (IKM) will transfer the data from the staging
area into the final target table. In our situation (because the staging area and
the target are both in the same Oracle instance), we might choose from one of
several suitable KMs such as IKM Oracle Incremental Update and IKM Oracle
Incremental Update (MERGE).

Example 2: File and database to second file
ODI requires the staging area location for any data flow to be hosted in an SQL
database. This is because it uses SQL processing within the database engine to do
the "heavy lifting" of creating, populating, and manipulating work tables within
the staging area. This implies that staging areas cannot be located in non-SQL
technologies such as filesystems, JMS message stores, or web service systems.
Therefore if we are using one of these non-SQL systems as our target, our staging
area must be located somewhere other than that target system. Fortunately with
ODI, this is very simple to achieve. In this example, the requirements from the sales
business unit have changed and now call for the output to be written to a file called
orderSummary.csv instead of being sent to the Oracle data mart. The only SQL
database server we have in the flow is the MySQL system, so we will locate our
ODI staging area there by simply selecting the appropriate Logical Schema from
the drop-down list on the interface's definition tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

MySQL

SS_0

Flat File

pricingCorrection.txt

LKM

IKMorders

orderItem

Flat File

orderSummary.csv

In our current example, there is still a need for the pricingCorrection file data
to be loaded using a Loading Knowledge Module (the same LKM File to SQL
mentioned before will be sufficient), but there is no longer a need for an LKM for
the MySQL data as the staging area is now located on the same database server as
the source data. Instead, a single Integration Knowledge Module (IKM SQL to File
Append) will perform the filtering and joining of information from all three sources
(now that the file information is being loaded into the MySQL server) and integrate
the final results into the output file. Furthermore, because MySQL allows a single
query to span multiple schemas within the same data server (in this case the data
schema and the work schema), the IKM no longer has to create an intermediate work
table to join the orders and orderItem data (as seen by the absence of an SS_1 icon
in the previous figure).

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[110]

Example 3: File to Enterprise Application
For the third example, the sales business unit requirements have changed yet again.
They now require the resulting flat file data from Example 2: File and database to second
file section to be integrated with their Enterprise CRM system (Oracle's Siebel CRM).

It's important to remember that although Siebel (and other
Enterprise applications) runs on top of a database, they should
not be treated as simple database systems themselves. They each
have pre-defined integration mechanisms which must always be
used when uploading data, in order to ensure that the application's
business logic can be properly applied and to keep the underlying
data complete and consistent. You will almost always find that
administrators of these systems will never allow work not managed
by these applications to take place directly inside the primary
databases or by using the primary database user identities.

With our Siebel example, one such mechanism is the Enterprise Integration Manager
(EIM) and ODI has an IKM that supports and simplifies data integration with Siebel
by encapsulating the use of Siebel EIM.

Since we shouldn't treat the Siebel system as a standard SQL database and our
input is coming from a flat file (for example, the output file from the previously
discussed flow in Example 2), we'll need to introduce an SQL database server,
(Oracle for instance), into this flow to host our staging area. In this example we are
using ODI in a more traditional ETL architecture (rather than an E-LT architecture),
due to the strict data integration requirements that the CRM team has imposed
on the target Siebel system. Most people will use their datawarehouse for that
operation, as it is more likely that additional information will be needed from that
database (taking us back to our first example, where information from the file is
combined with data from the database).

Flat File

orderSummary.csv

LKM

SS_0

Oracle

(for staging)

IKM

Siebel CRM

Siebel EIM

Interface Table

Siebel

Base Table

Siebel EIM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

For the orderSummary.csv flat file, we can once again use the LKM File to SQL KM
to load the file data into the staging area located on the Oracle database. For the
integration into Siebel, we can use the IKM SQL to Siebel Append (EIM), which not
only loads the EIM interface table in Siebel, but also executes the EIM task in Siebel
to move the EIM table data into the base tables.

Oracle's Application Adapters for Data Integration—of which
the IKM SQL to Siebel Append (EIM) Knowledge Module
is a component—are not licensed as part of the base ODI
functionality, so they have an additional license cost attached
to their use. Other applications that ODI supports with out of
the box Knowledge Modules include, but are not limited to,
E-Business Suite,JD Edwards, PeopleSoft, Hyperion, and SAP.
Licencing for these KMs will vary.

In this section we've taken a look at three basic and frequently seen
requirements-driven data flows and peeked under the covers at some
additional details of the core actions and actors in each flow. Lets recap
as follows:

•	 The staging area is co-located with the target for any interface by default,
representing ODI's default E-LT architecture. It should be noted that ODI
can be easily reconfigured with a few mouse clicks to have the staging data
on a separate server, representing a traditional ETL architecture. The staging
area can reside on the source or even an intermediate system if required.

•	 Two types of Knowledge Modules play vital roles in ODI Interfaces
as follows:

°° IKMs are used to integrate data into the final target
°° LKMs are used to load the staging area with data located on other

source systems

•	 Some KMs have the capability to issue external commands to finalize
the integration of data into the target systems.

•	 ODI has an agile capability to adapt to changing requirements
by leveraging its library of Knowledge Modules that abstract and
encapsulate the complexity and details of "the know-how" for
integrating with a given technology or application.

Now that we understand the importance of Knowledge Modules and the
functionality they deliver, we will look at how we go about selecting which
Knowledge Modules we will use and how to bring them into our ODI projects.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[112]

Importing and choosing Knowledge
Modules
We've now seen that Loading and Integration Knowledge Modules play pivotal roles
in performing data integration actions within ODI. So how and when do we choose
which KM to use?

The ODI component that actually moves data is called an Interface, and it is located
inside the ODI Designer Interface editor where you specify which KM is to be used
for source and target data movement behavior. Interfaces are created and organized
in folders within a project, but for an interface to be able to leverage a set of KM, the
KMs must have been previously imported into this very project.

Choosing Knowledge Modules
Within the six types of Knowledge Modules, let's just focus for a moment on the two
types that are central to moving and transforming data namely, LKMs and IKMs.

When a Knowledge Module has been previously imported into the parent project
and applied to the interface target and the interface is subsequently executed, it is the
steps within the IKM that determine the what, how, and when data is moved into the
target data store. Therefore, we can safely say that every interface will need an IKM.
But which one?

If we adopt the default E-LT architecture approach and have the staging area
residing on the same server as the target, as in our first data flow example, then we
need a single technology IKM such as like the IKM Oracle Incremental Update
mentioned in that example. So the choice of IKM to import into the project and select
for use will depend on the following:

•	 Whether the type of database that you're using for the staging area and target
has specific IKMs available (for example, Oracle, Microsoft SQL Server, and
many others), or whether you need to use a "generic" SQL flavor (for example
for MySQL, PostgreSQL, and so on)

•	 Whether there is more than one integration technique available for that
technology and what method is used by each, such as the Oracle MERGE
construct as mentioned in the first flow example

If, as in our second data flow example, the staging area and target are in different
servers, then we will need to use a multi-technology IKM, such as IKM SQL to File
Append suggested in that flow. Indeed, most (but not quite all) of these have IKM SQL
to … names, but all of them will be IKM <something> to <something>, sometimes
with a (method) qualifier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

LKMs load data into the staging area from other servers. Therefore all LKMs are
multi-technology. If the source data is in the same server as the staging area then you
don't need an LKM as can be inferred from the flow path taken by the MySQL data
in the second flow example. Without the corrections file data being added in that
example, there would have been no need for an LKM at all.

Once again, the choice of LKM is governed by the following:

•	 The technologies involved at either end of the loading flow and the direction
in which data will flow

•	 The method to be used to move the data, LKM File to Oracle (EXTERNAL
TABLE) and LKM File to Oracle (SQLLDR) could both be used to load file
data but employ very different techniques to achieve that purpose

Having covered IKMs, LKMs, and RKMs earlier in this chapter, let's briefly cover
three other types of Knowledge Module used by ODI, as follows:

•	 Check Knowledge Modules (CKMs) are used to check and enforce data
integrity through testing conformance to constraints and references, either
statically on data tables on source or target systems, or dynamically during
the process of a data flow defined in an ODI interface. There are technology-
specific CKMs for databases that require specific SQL code. All other
databases will use the generic CKM SQL.

•	 Journalizing Knowledge Modules (JKMs) are used to manage the
journalizing of data for changed data capture. They have a technology flavor
(there are no generic SQL JKMs), an approach of either simple or consistent
(the latter guaranteeing that no child records are loaded before their parent
records), and optionally a method name, such as (Oracle GoldenGate) to
differentiate change detection techniques.

•	 Service Knowledge Modules (SKMs) are used for generating fine-grained
data web services based on ODI datastores and models based on database
technology. There are a few database-specific versions, for example to create
web services based on Oracle tables, as well as a generic SKM SQL.

Now that we know how to choose between Knowledge Modules and what we will
use them for, let's see how we enable that use.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[114]

Importing a Knowledge Module
Knowledge Modules are supplied out of the box as XML files and installed as part of
the ODI installation process. Rather than having all Knowledge Modules accessible
to all projects all the time, a small subset of Knowledge Modules are imported by the
ODI Studio user for each project.

ODI 11.1.1.6 allows for Global Knowledge Modules
that can be shared across projects.

So if we have several situations in our overall IT project where we need to transform
and upload file data into an Oracle database via External Tables, then we could
either develop the necessary interfaces in several projects and import the LKM File
to Oracle (External Tables) into each of those ODI projects, or we could create
several subfolders in a single ODI project and import the KM just once. How you
organize work in ODI is a very subjective topic and there is rarely just one right way
to do things.

Importing a single KM—or a set of them—is a very simple exercise. We only have
to follow these steps:

1.	 Expand our project node in the Projects section of the Designer Navigator.
2.	 Right-click on the Knowledge Modules node and select Import

Knowledge Modules.

If you want to follow along, you will need to create
a new project via the menu icon at the right-hand
end of the Projects section header.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

3.	 A dialog box will appear to allow us to select the KMs to import. When doing
it for the first time we'll need to browse to the folder holding the KM files—this
is the oracledi\xml-reference subfolder below our ODI_HOME (where we
installed ODI 11g).

4.	 Once we've done this we'll see a list of all the available KMs in that folder.
We can scroll through the list selecting which KM(s) we want to import
(making multiple selections with Ctrl+Click) and then press OK to perform
the import of the KMs.

When the import has completed you will see a report of the import process (which
can be ignored). Note that all of the imported KMs were automatically organized
into their appropriate Knowledge Module subfolders in the ODI project.

KMs—A quick look under the hood
If we drill down within the Knowledge Modules node to any given KM and
double-click on it, that Knowledge Module will be opened by an editor. On the
Definition tab we can see the source and/or target technologies for the KM and
whether it is the default KM for use with this pairing. If the latter is the case, the
KM will automatically be inserted into an interface definition if that technology
combination for source and target is used.

We can also see some Description text, which often contains very useful information
about the use, characteristics, and restrictions for the KM.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[116]

Clicking on the Details tab shows us an ordered list of the steps included inside the
KM, including each step name, whether the steps operate within a transaction and
when that transaction is committed, the log detail level for each step, whether each
step updates any logged metrics, and so on.

The sequencing of these steps specifies the order in which they will be executed.
Later when examining the operator logs generated by our interface, we will see these
step names again along with all of the ODI logging information associated with
them. These logs will give us a direct link between the code executed, the outcomes
of that code, and the source from which the executable code was generated.

If we were to select and double-click on any step name, we would see the actual
KM source code for that step. These code blocks usually consist of templates of SQL
constructions with various placeholders representing the use of ODI substitution
methods. These substitution placeholders will be used by ODI when generating
code to insert specific table names, columns, datatypes, where clauses and the like
at execution time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

Hopefully by now you will have concluded that we could amend, delete, replace,
or otherwise customize the KM code as we desire or require. This is a perfectly
acceptable—and not uncommon practice—in ODI, but it falls outside the scope of
this book. (For more information on KM development, refer to the Knowledge Module
Developer's Guide for Oracle Data Integrator manual). Here's a small warning though: if
we change the code here, we will be changing only this copy of the KM in this project
in this repository. If we want to propagate any of our changes elsewhere, we should
do the following:

1.	 Change a renamed copy of the original KM so it isn't in danger of being
overwritten by mistake or by later ODI patches and updates.

2.	 Export the renamed and amended KM into an XML file.
3.	 Import the new KM into other ODI projects and repositories as needed.

Configuring behavior with KM options
It would be overly cumbersome if, for every slight change in KM behavior, we
had to write, change or otherwise customize a different KM to reflect each of those
slight alterations. For example, we may wish to sometimes delete all of the records
in a target table before we upload the latest data set, or perhaps we want to control
whether a database commit is issued after an interface flow has completed.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[118]

The ability to manage behavior in this way can be achieved via KM options. KM
options are similar to local parameters with a default value specified. These options
can be tested, evaluated, or substituted as values within the KM code and can be
represented by one of the three different types—a checkbox (a Boolean true/false
value), text, or a specific value (numeric)—as follows:

•	 The most common type of option used is the checkbox type(for example,
a checkbox option might be used to decide whether to issue a database
transaction commit).

•	 A value typed option is commonly used for Oracle-specific KMs
to dynamically alter the code that the KM template will generate
when executing against different versions of the Oracle Database
(for example 8, 9, 10, and so on.)

•	 The Oracle-specific IKMs often use a text type option (with an empty
string as the default value) to provide the ODI interface developer with
the ability to specify an optimizer hint when loading the final target table
in an interface. This hint text would then be embedded at the appropriate
place within the SQL that the KM generates to integrate the data into the
target table.

All objects in an ODI project share the same set of KMs and KM
code. Therefore, if during design time you modify or overwrite
an existing KM, all design-time objects which use that KM will
immediately use the new code. This is something to remember,
even if you are just updating KMs from a patch update release of
ODI. However, simply setting a KM option value inside an ODI
interface only affects the KM's behavior within that one interface.

In this section we learned how to select and import Knowledge Modules ready
for use in ODI projects and how to modify their behavior. We took a look at the
following points:

•	 An IKM is always needed in an ODI interface
•	 An LKM is required when moving data between two different technologies
•	 The KMs are selected based on:

°° Technology flavors used in the operation
°° The method used to perform the operation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

•	 The ODI-provided KMs are in the <ODI_HOME>\oracledi\xml-reference
folder and are imported for each project, or as global objects (starting with
ODI 11.1.1.6)

•	 Interfaces can only use KMs that have been imported into their "parent"
project or global KMs

•	 KM steps are individually logged in the execution logs in ODI and they
correlate to the interface execution steps presented within the Operator
ODI Studio component

•	 KM code can be customized, but this is not a "Getting started" task
•	 KM behavior can more easily be modified (within limits) by setting their

individual options
•	 Modifying and/or replacing existing KMs must be treated with great care

at design-time

Examining ODI Interfaces
Having had a look at data flows and the roles that KMs play within them, let's now
dig a bit deeper into the make-up of the primary data flow component—an interface.

The interface component in ODI defines the following data flow properties:

•	 The destination datastore for the data (the target). This will be chosen from
an ODI model.

•	 The datastores that supply the input data (the sources). These too will be
chosen from ODI models.

•	 The transformations that are applied to the data during the transition from
sources to target (the mappings). These are expressed in SQL.

•	 The physical transfer mechanisms that are used between sources and
target (the flow). We have already seen that this role is performed by the
Knowledge Modules.

The first two of these properties specify what we want to achieve in the interface.
The flow specifies how it will be achieved.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[120]

Overview tab
On the Definition Overview tab of the Interface editor, we can specify the name of
the interface and optionally specify whether we wish to locate the staging area of the
flow on the target data server (the default) or somewhere else.

If we have additional Logical Schemas defined that are hosted on other relational
database technologies, we could select one of these to be our staging area bearing in
mind that ODI will create, populate, update, and delete temporary database objects
at runtime within the corresponding Physical Schema.

One such option that is available by default in ODI is the "In-Memory Engine", but
this choice can realistically cope with only a few hundred thousand source records
and can consume significant memory within the executing ODI agent.

As much as possible, always try to keep the staging area on the target system. In
most cases this will provide much better performance (less network hops than
staging in a separate server, and a better leverage of the set-based processing that
databases have been built for) and a much simpler infrastructure.

The previous screenshot shows a new aspect introduced in the ODI 11g Interface
editor. There are now tabs along the bottom of the editor as well as the sidebar tabs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[121]

Mapping tab
Clicking on the Mapping tab will move us to the main graphical editor used for
specifying the interface target, sources, and mappings. It allows us to specify what
we want to achieve, where the data is stored initially, where we ultimately want
the data, and what transformations we need to perform to store the data in the
target system.

The previous screenshot doesn't show items in the proportion that you'd most
likely use them, but it's useful to help explain the main elements. In reality you'd
normally expand the editor to full screen (by double-clicking the top tab) when
building interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[122]

The top-left pane is the main canvas for adding source datastores, dragging join lines
between them, and adding filters to limit the data to be processed by the interface. To
the right of the main canvas is the target datastore area, which displays the columns
of the target table, a set of indicators for each column, and its mapping text. The
bottom section is the Properties Editor where the text and additional configuration
information for each mapping, join, and filter can be entered.

We build an interface by dragging-and-dropping a target datastore and all necessary
source datastores into their respective screen areas, creating joins and filters in
the top-left canvas, and setting all the specific details of those joins, filters, and the
mappings by using the Property Editor pane.

Target field mappings can be specified using several different formats, including
the following:

•	 Source Column: These are dragged-and-dropped directly into the
target column's Mapping field from the datastore columns in the
source canvas. Each column name is prefixed by the datastore's alias,
for example SALES_PERS.LAST_NAME.

•	 Fixed Value or Constant: These must follow SQL formatting rules, so string
values are enclosed in single quotes, for example, 'John Doe', whereas
numeric values are not, for example, 11.1.

•	 DBMS Function: Any function supported by the platform on which the
mapping is to be performed, for example, SYSDATE for execution on Oracle.
The location of the mapping's execution is shown by a symbol in the target's
Indicators column and also by a radio button in the Property Editor below
the textbox that holds the mapping text.

•	 DBMS Aggregate: A simple aggregate of a source column, for example,
SUM(ITEM.QUANTITY). ODI will automatically generate a corresponding
GROUP BY clause whenever an aggregate function is detected.

Group-level aggregation functions that correspond to the
SQL "having clause" are not implemented here but rather
by defining aggregations within an ODI filter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[123]

•	 A combination of the previous formats: As long as the underlying database
understands your code, you can build the most complex mappings. A
simple example would be. InitCap(SALES_PERS.FIRST_NAME) || ' '
|| InitCap(SALES_PERS.LAST_NAME). The location of the mapping's
execution will allow you to leverage the database of your choice for the
transformations (source, staging area, or target). This choice can be made
on a per column basis.

Mappings can also include ODI variables which are covered in the previous chapter.

As you include sources and the target in the interface, the default behavior of ODI
is to ask whether you wish to perform an Automatic Mapping. Automatic mapping
creates straight-through source column to target column mappings where the
column names match exactly. There is no capability to add a mapping translation
dictionary and underscores are significant, so CUST_ID is not automatically mapped
to CUSTID. Also, ODI takes no account of column datatypes during this process. If
you manually enter or want to amend existing mappings, you can do this directly by
changing the text in the Implementation textbox, or you can use ODI's Expression
Editor which is available via the pencil icon located at the right-hand end of the title
bar of the Implementation area.

It is good practice during this step is to validate each
SQL expression by clicking on the "check" icon, which
is also at the right-hand end of the title bar.

Flow tab
The Flow tab on the bottom edge of the top two panes opens the Flow editor for
the interface, where we can specify how data will be transferred from source to
target, and how it will be integrated in the target system—are we just adding new
records, replacing existing ones, or maybe we want to have a more advanced type
of integration like slowly changing dimensions?

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[124]

The following screenshot shows the various source datastores, filters, and joins, the
intermediate work tables (or source sets) of data, the staging area location, the target
datastore, and the Knowledge Modules that ODI will use to implement the flow.

The Flow tab also includes a Property editor pane where we can view and select the
KM for each flow segment and set configuration options for each KM as our flow
requires (for example, turning off work table logging) as depicted in the previous
screenshot. Remember, in order for a KM to be included in the drop-down list
and available for selection, it must have first been imported into the ODI project
containing the interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[125]

Quick-Edit tab
ODI 11g introduces a new view known as the Quick-Edit tab. This feature provides
a tabular alternative to the normal graphical approach used when building an
interface. As opposed to using the normal graphical method, the Quick-Edit tab
uses a configuration sheet for setting and editing the target, sources, joins, filters,
and mappings. The following screenshot illustrates this new Quick-Edit method.
This view is usually more practical for massive edits or cut and paste. For instance,
you can change the location of the transformations from staging area to source for
multiple columns at once by copying "source" for one column and pasting this in
place of multiple "staging area" (select the different lines you want replaced and
paste over the multiple selections). Similarly, this view will be very convenient for
bulk review of integration options such as which columns are part of the update key,
which columns are used for updates/inserts, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

ODI Sources, Targets, and Knowledge Modules

[126]

Summary
We've covered a lot in this chapter. We started off by taking a look at how we define
physical connections to our data resources, create Logical Schema names to decouple
us from any specific operational environment, and link the physical and logical
representations via Contexts.

We walked through the high-level concepts of how to reverse-engineer those Logical
Schemas to create the ODI models that will become the foundation for our data
integration flows.

We examined three simple flow examples that illustrated the use of Knowledge
Modules for loading and integrating data, and we learned how to choose and import
those Knowledge Modules.

We had a quick look at the internals of a KM, giving us a better understanding of the
information that we'll see later in the execution logs of the following chapters.

Finally we had a brief look at Interfaces and the various editor panes used to create
them, including the graphical mappings and flow editors and the new configuration
sheet oriented Quick-Edit approach. We'll be using these editors a lot in the
upcoming chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases
Databases and database systems hold the vast majority of data processed by ODI
around the world, so it's appropriate that we start our Purchase Order example by
performing some basic work using databases.

Our overall example scenario involves uploading information concerning Purchase
Order processing into a data mart and we'll begin by moving data from a customer
data system's database into our data mart. To do this we'll be performing the
following tasks:

•	 Take a quick overview of the physical layout of our source and target
systems and the requirements for our first data integration task

•	 Configure data servers, Physical Schemas, and Logical Schemas for our target
and source systems and link them to a Context using the Topology Navigator

•	 Use the Designer Navigator to create models based on the Logical
Schemas and reverse-engineer the metadata from the physical systems
in our environment

•	 Create a new project in the Designer Navigator and import the Knowledge
Modules we anticipate we'll use in this task

•	 Create an interface to integrate data into our data mart from our source
customer system, add some transformational mappings, and check if the
flow behavior is as required

•	 Run the interface as a functional test
•	 Use the Operator Navigator to review the execution tree and examine some

of the code generated for the interface we created

This will give us a good first view of the overall sequence of activities normally
performed when creating data integration components in ODI 11g and will also
give us a solid foundation for expanding our knowledge and expertise in the
chapters that follow.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[128]

Sample scenario description
During this first example, we'll be moving data from a Customer System database
into a data mart. To keep things simple for this stage, we'll deal with just one source
table and one target table, and they're both hosted in Oracle databases. However,
the structures and formats of these two tables are different, so we'll have to perform
some transformations and enrichments along the way. Having accurate and enriched
customer data moving from our source Customer System into the data mart will be
a key foundational element of being able to process orders within the Purchase
Order (PO) processing solution.

It just so happens that in our example environment, both tables are held in schemas
managed by the same Oracle server instance and we could probably achieve our
integration task with a single SQL statement. However, we're going to simulate
having these schemas held on different servers, because in a production system
that's far more likely to be the case.

Also, we're not going to be using Oracle database links in this exercise (although ODI
can certainly make use of them by choosing an appropriate dblink-based LKM). Our
aim here is to use a single heterogeneous tool with a consistent approach for all of our
data integration needs, rather than rely on scattered segments of vendor-specific code
that need to be knitted together by hand to make the whole integration environment
function as it should.

So let's take a look at some of the details of the task we have to complete.

Integration target
The target table we will use is the CUSTOMER table located in the DATAMART schema
in an Oracle database and it has the following structure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

The CUSTOMER table is not the only table in the DATAMART schema, but for now it's
the only one that we want to work with. In its initial state, this table is empty, but by
completing this chapter's tasks we will populate it with data from the source system.

Integration source
The source table is called CUSTOMER_MASTER and is located in the CUSTSYSTEM
schema (to keep things simple, it is the only table in the CUSTSYSTEM Oracle schema).
This table has the following structure:

Integration mappings
After close examination of the source and target tables, you will see that although
the two structures are similar, there are some crucial differences and we'll have
to overcome these differences with our mappings. Many of the mappings will
be successfully handled by automatic mapping: the column names, types, and
lengths are the same in both source and target. However, some mappings have
to be done manually:

•	 The source has a CUSTID column whereas the target column is called
CUSTOMER_ID.

•	 The PREFIX column in our source is a character string, but in the target it's
a number. Our Customer System has all the titles normalized to US prefixes,
such as Mr, Mrs, Dr, and so on, but we may wish to process the data later
to have national-specific titles based on country or residence (such as Hr
and Fr for German citizens), so our data mart has all prefixes translated
into numeric codes.

•	 Our target stores an AGE, but our source has a DATE_OF_BIRTH.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[130]

•	 We have another column name difference between SALES_PERS_ID and
SALES_PERSON_ID.

•	 The target has two additional mandatory columns to hold the date when
the record was created in the data mart and the date that the record was
last changed.

Data flow logistics
We are going to access the source CUSTSYSTEM using the schema owner's username,
but in accordance with ODI best practice, our access to the data mart will be via a
user called ODITEMP who has its own schema that we will use for the staging area
and who has also been given privileges to be able to integrate the incoming data into
the DATAMART schema.

The Knowledge Modules (KMs) that we'll be using are LKM SQL to Oracle to load the
data from the source into the staging area and then IKM Oracle Incremental Update
to integrate the data from the staging area into the final target. At this stage we won't
be performing any integrity checks on the data flow, so we won't be using a Check
Knowledge Module (CKM) in this task.

So our high-level flow will be something similar to the following figure:

Oracle:

Customer

System Server

CUSTOMER

table

CUSTOMER_

MASTER

table

LKM

Oracle:

Data Warehouse

Server

IKMSS_0

IKM Oracle Incremental Update

LKM SQL to Oracle

DATAMART
schema

ODITEMP
schema

CUSTSYSTEM
schema

Now that we're armed with all the information, we can get started with the task!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

Exercise 1: Building the Load_Customer
interface
The rest of this chapter assumes that we have the infrastructure described
previously. You can adapt the system names, user names, and table names
in your own environment as you see fit.

We'll complete this exercise in a number of sections as follows:

•	 Building the topology: To map the physical data resources and show
how to connect to them to the Logical Schemas

•	 Reverse-engineering the model metadata: To translate those physical
resources into location-independent representations (Logical Schemas)
that will be used in ODI to build data integration objects and workflows

•	 Moving the data with an ODI interface: To construct and execute an
interface that will perform the transformation mappings and data flow
operations and populate our target table in the data mart

•	 Checking the execution with Operator console: To view the execution
status and check the number of rows integrated, together with viewing
some of the code generated and run by ODI

Building the topology
In this section we will:

•	 Create the topology references to our source and target servers and schemas
•	 Create Logical Schema names for the Physical Schemas, which we will use

when we create ODI models based on these schemas
•	 Associate our Logical and Physical schemas using the default Global

context, which we will be using throughout this example

Throughout the rest of the example, and especially during setting
up the Physical Architecture, there will be times when we will need
to enter host name for, say, where a database resource is running.
From here on and throughout the rest of the tutorial we'll refer to
this host name as localhost for simplicity's sake. Remember that
if any remote clients were to use this topology information, it will
be incorrect and cause errors, but the assumption here is that our
whole exercise will run on a single machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[132]

Setting up the topology
Setting up the topology will require the following steps:

1.	 If you are following along with your own installation of ODI, then first make
sure the Oracle instance that hosts your ODI repositories is up and running.
Start ODI Studio (Oracle | Oracle Data Integrator | Oracle Data Integrator
Studio on the Windows Start menu) and connect to your default repository.

2.	 When we click on the Topology tab to switch to the Topology Navigator, we
expand the Technologies node in the Physical Architecture section.

3.	 If you see a large list of technologies displayed, simplify your view by hiding
the unused technologies. To do this, click on the factory icon in the Topology
Navigator header bar and select Hide Unused Technologies.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

4.	 We right-click on the Oracle node and select New Data Server.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[134]

5.	 An editor creation notification should briefly appear and then the Data
Server editor will open. Name the data server as it makes sense in your
environment. For our example, we are naming the data server representing
the customer data as XE_on_local_as_CUSTSYSTEM and we are setting the
user name to be CUSTSYSTEM with a password of welcome1. We leave all
other fields as they are. The title tab for the editor will change to the name
of the data server.

6.	 On the JDBC tab, we click on the magnifying glass icon at the right-hand
side of the JDBC Driver field to open the selection dialog. The dialog
will show the default JDBC driver class for the Oracle technology. This
driver is pre-installed with ODI 11g.

If the driver for the database you want is not shown, it is
possible to enter it manually into the text field. You will need
to refer to the documentation of the driver of your choice to
know which class name and which JDBC URL to use. Note
also that the driver list may not be sorted alphabetically. We
will see how to do this in more detail in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

7.	 We click on OK to accept this driver.
8.	 We click on the magnifier icon next to the JDBC Url field and accept the

default URL template in the URL examples dialog box by clicking on OK.
9.	 We edit the URL template in the JDBC Url field to contain the connection

details to the actual Customer System Oracle instance, replacing the <host>,
<port>, and <sid> sections of the template with appropriate values for
our environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[136]

10.	 We click on the Test Connection button (it becomes a button when the mouse
moves over it) in the header bar for the editor. When asked if we want to save
our data to continue, we click on Yes in the Confirmation dialog.

11.	 An informational dialog appears reminding us to create a Physical Schema
for this server:

We'll do this later, so we click on OK to dismiss this dialog and continue
with the test.

12.	 Another dialog will appear, this one being the actual test execution box
(this operation will "ping" the physical connection using the information
just provided as a means of validation):

The reference to Local (No Agent) in the Physical Agent field means
that we're going to use the execution agent embedded within ODI Studio,
which is precisely what we want to do. So we click on the Test button to
execute the test.

Testing a remote database connection does not require a
remote agent since all the information needed is provided in
the URL; this is why we can use the embedded local agent.
If we were to run the test with a remote agent, we would be
testing the connection from the Studio to the agent, and from
the agent to the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

In your own environment, if all the details have been entered correctly and
the database to which you are trying to connect is available, you will see a
Successful Connection informational message, which can be dismissed by
pressing the OK button. If the connection fails, check your parameters again,
and make sure that your network allows you to connect (firewalls can get in
the way!).

13.	 We close the editor by clicking on the X icon that will appear when we move
the mouse to the right-hand end of the title tab.

14.	 We've created our source data server for the Customer System data, but
before we create our Physical Schema reference, we'll create another Oracle
data server reference, this time for the target data mart server. To do this,
we repeat steps 4 to 14, but this time using the following details during the
second iteration through step 5 (all other details, including the JDBC Url,
will be the same as before):

°° Name: XE_on_local_as_ODITEMP
°° User: ODITEMP
°° Password: welcome1

As stated earlier, we are simulating two separate servers,
even though we only have one. If the different schemas are
in the same instance of the database in your environment,
you really want to create one single server (connecting
with an equivalent of the ODITEMP user) and define all the
necessary Physical Schemas underneath that one server.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[138]

15.	 Having created the two servers, we need to create the Topology entries
for the Physical Schemas. So we expand the Oracle technology node in the
Technologies list shown in the Topology Navigator's Physical Architecture
view, we right-click on the data server node for XE_on_local_as_CUSTSYSTEM
and we select New Physical Schema.

16.	 On the Definition tab of the Physical Schema editor, we use the drop-down
lists for the Schema (Schema) and Schema (Work Schema) fields to select
CUSTSYSTEM as the Oracle schema for both

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

We're only going to be reading data from the CUSTSYSTEM
schema and we won't be creating any temporary tables or other
artifacts. So in this case, we can safely use the same schema name
for both the data and work areas of the ODI Physical Schema
definition. In the future however, it is usually considered best
practice to isolate ODI artifacts into a separate work schema and
to access all other business schemas through this user.
Also remember that we're not actually creating any new
database schemas here. We're simply creating new references in
ODI to existing database schemas to give us visibility into the
metadata and data they hold.

17.	 We click on the Context finger-tab and on the green + button at the top-right
of this pane to add a new context-based mapping to a Logical Schema name.

18.	 We only have one context defined, that is the default one called Global
that's created when ODI is installed, so this will appear automatically in the
Context column. We click in the Logical Schema column and replace the
<Undefined> text with ORACLE_CUSTSYSTEM and then hit the Enter key to
complete your change.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[140]

19.	 We click on the Save button (floppy disk icon) on the main ODI toolbar to
save the Physical Schema definition and then close the editor pane.

20.	 We now create another Physical Schema, this time for the XE_on_local_
as_ODITEMP data server and choose DATAMART as the Schema (Schema)
and ODITEMP as the Schema (Work Schema).

21.	 We associate the Physical Schema to a Logical Schema called ORACLE_
DATAMART using the Global context, then save our work, and close the editor.

Having created our source and target data servers, the Physical Schemas they hold,
and having associated each of those schemas to Logical Schema names using the
Global context, we've done all we need to do in the Topology Navigator.

In real-life use of ODI, the creation of a topology is primarily an
upfront exercise. Indeed, it is often performed by people other
than the majority of ODI developers, as they need to know (or
be able to specify, or have access to) the connection credentials
that ODI will use to access the various database servers and
schemas. That is why there are different navigators in ODI
Studio—the Topology Navigator and the Designer Navigator.
Topology is usually used by administrators, and Designer is
mostly used by developers and data stewards.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

Reverse-engineering the model metadata
Next we want to extract the data structure information for our source and target
tables from their Oracle databases and create ODI models. So in this section we will:

•	 Create a model to represent the Customer System we will be using as a
data source in our interface and reverse-engineer the metadata from the
ORACLE_CUSTSYSTEM Logical Schema into that model.

•	 Create a second model to represent the data mart we will be using as
the target in our interface and perform a selective reverse-engineering
operation on the ORACLE_DATAMART Logical Schema to extract only the
metadata for the CUSTOMER table.

•	 View the data in the Customer System to validate that our reverse-
engineering of that model has been successful (there is no data in
the data mart yet).

Follow the given steps:

1.	 With ODI Studio still open, we click on the Designer Navigator tab in the
left-most pane, we expand the Models view area, we click on the menu icon
in the Models view title bar and we select New Model.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[142]

2.	 Here we chose to name the model Oracle Customer System. Using the
drop-down lists, choose Oracle as the technology and ORACLE_CUSTSYSTEM
as the logical schema, leaving all the other fields as they are. The Code field
will automatically be completed as we type the model name.

In the previous screenshot, the Code for a model is an internal name that ODI
uses as a prefix to distinguish between otherwise similarly named datastores.
For example, if we had two models that had codes of SRC and TRG, each of
which had datastores called CUSTOMER, then ODI would internally (in its
code generation) refer to them as SRC.CUSTOMER and TRG.CUSTOMER. The
same idea is used for ODI projects as you may notice later. Consequently, if
you change the Code value after you've started making use of a model's or
project's contents, you are at a risk of breaking things.

Also note that code fields within ODI will standardize
the names you use by replacing all blank spaces with
underscores and capitalizing all letters.

3.	 We click on the Reverse Engineer tab and we notice that the Global context
will be used to translate the Logical Schema name on which the model is
based into a physical connection to extract the metadata.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

You will also see that we can choose the types of objects
whose metadata will be retrieved by type and/or search
mask—with % being a wildcard character. We can also
influence whether we remove any prefix from the retrieved
table names, or whether we need to truncate the table name
to a maximum number of characters. These features are
primarily used when deriving table aliases.

We want to reverse-engineer all the tables from the Customer System (there's
only one anyway), so we'll leave all the filter fields with their default settings.

4.	 We click on the Reverse Engineer button at the left-hand side of the Model
Editor title bar, then click on Yes in the confirmation dialog to save the model
and proceed.

An alternative way to start the reverse-engineering process
would be to use the ODI Studio main menu and select ODI |
Reverse-Engineer.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[144]

5.	 A progress dialog will appear, tracking progress through the phases of
reverse-engineering. Once this process is complete, the dialog will disappear
and we can close the Model editor. We will now see the new Oracle
Customer System model in the Models view of the Navigator. When we
expand this model node, we see that the CUSTOMER_MASTER Oracle table is
represented by an ODI datastore with the same name in the newly created
ODI model.

6.	 Now it's time to create the model for our data mart. We create a new model,
this time using the following details on the Definition tab:

°° Name: 			 Oracle DataMart
°° Technology: 		 Oracle

°° Logical Schema:	 ORACLE_DATAMART

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

7.	 If we click on the Reverse Engineer tab, we will see that once more the
Global context will be used by default for the execution of the metadata
extraction process.

8.	 We click straight on the Selective Reverse-Engineering tab, as we want
to manually select which table definitions to import from the DATAMART
schema at this stage.

9.	 On this tab we click on the Selective Reverse-Engineering checkbox to
enable this option. We then click on New Datastores checkbox (we don't
have any existing ones in the ODI model that we wish to update, so Existing
Datastores is left unchecked) and then Objects to Reverse Engineer to
display a list of all the available tables in the DATAMART Oracle database.

As noted earlier, we could have influenced and refined
this list by using the Types and Mask settings on the
Reverse Engineer tab if, say, there were a huge number
of tables in the database to be reverse-engineered (an
ERP system for instance, will have thousands of tables
within any given schema).

We clear the selections for all the tables and then recheck the box against
the CUSTOMER table.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[146]

10.	 We click on the Reverse Engineer button once more, saving our model when
asked and then close the Model editor. Once again we will be able to see our
new model and datastore in the Models view.

11.	 Just as a final check, we go back to the source model and right-click on the
CUSTOMER_MASTER datastore in the Oracle Customer System model and click
on View Data:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[147]

12.	 A read-only data editor opens showing the contents of the CUSTOMER_MASTER
table (this data viewing functionality also uses the context defined on the
Reverse Engineering tab).

The difference between the Data… and View Data
operations on the datastore is that with View Data
you cannot alter the data.

Recapping what we've accomplished so far:

•	 We've now successfully built models and datastores in ODI based on our
physical data structures (and tested that at least one is correctly configured).

•	 We created the Oracle Customer System model based on the ORACLE_
CUSTSYSTEM Logical Schema (models are always based on Logical Schemas)
and then reverse-engineered the whole of the CUSTSYSTEM database
schema—even though it was only one table. This model provides the
foundational source of customer data for our PO Processing data mart.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[148]

•	 We created a second model called Oracle DataMart and then performed
selective reverse-engineering to only create a CUSTOMER datastore.

•	 In each case, the Global context was used to associate the Logical Schema
on which each model is based with a real Physical Schema that could be
interrogated for its structure.

It's important to stress that although ODI models and
datastores are associated with a specific technology
(per the Definition tab), they contain no information
about physical locations, server names, user
credentials, and so on.
Also note that the context specified in the Model editor
pages is only used at the point of reverse-engineering
and for viewing the data within Designer Navigator.
The context specifying which physical environment
will be accessed during execution will be determined
at a different place/time.

Having configured our ODI representations of our data objects, it's time to build
an interface to move and transform the data from our Customer System into our
data mart.

Moving the data using an ODI interface
In this section we are going to:

•	 Create a new ODI project in which to organize our work
•	 Import the Knowledge Modules that we anticipate we'll need for our task
•	 Create an interface to load data from the CUSTOMER_MASTER datastore in the

Oracle Customer System model into the CUSTOMER datastore in the Oracle
Data Mart model

•	 Adjust the mappings in the interface to meet our task and overall PO
processing requirements outlined at the start of this chapter

•	 Check the data flow generated by ODI and adjust the configuration options
of the KMs to meet our requirements

•	 Execute the interface and examine the results to ensure that the CUSTOMER
datastore in our data mart now has valid customer data consistent with our
PO processing requirements

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[149]

To create our very first interface, we will follow these steps:

1.	 With Designer Navigator still open, we click on the project menu icon on
the title bar of the Projects view and select New Project.

2.	 We call the project Chapter 5, save our work, and close the editor.
3.	 In the Projects view, we expand the Chapter 5 project node and the First

Folder node beneath that to see the general layout of a project's organization.

4.	 We right-click on the Knowledge Modules node and select Import
Knowledge Modules….

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[150]

5.	 The very first time you import a Knowledge Module (KM) you'll need to set
the directory from which the import takes place, so we click on the search
icon which is to the right of the File import directory field.

6.	 We browse to our <ODI_HOME>\oracledi\xml-reference directory, where
<ODI_HOME> is the root folder in which we installed ODI 11g in Chapter 2,
Product Installation. As we followed all the defaults for our installation on
Windows, this is C:\Oracle\Middleware\Oracle_ODI1\oracledi\xml-
reference. Once we've browsed to the correct location, we click on Open
to return to the KM import dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[151]

7.	 The KM import dialog now shows a list of all the Knowledge Modules
located in the import directory that we have specified. Using the normal
Windows method of multiple-select (Ctrl+Click), we select both IKM Oracle
Incremental Update and LKM SQL to Oracle and click on OK to perform the
import. (You can also import each KM separately—it makes no difference.)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[152]

8.	 We see an ODI action progress dialog for a short while and then an Import
report window is displayed. The contents of this report (new in ODI 11g) are
not important here, so we can just close the report window. If you expand
the Knowledge Modules node in the Chapter 5 project and then expand
the loading and integration sub-nodes there, you'll see your newly imported
KMs ready for use.

9.	 In First Folder, we right-click on the Interfaces node and select
New Interface.

10.	 On the opening page of the Interface editor, we call the interface Load
CUSTOMER and click on the Mapping tab at the bottom of the pane to invoke
the graphical Mapping editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[153]

11.	 The editor starts for the first time with the Messages, Property Inspector,
and Thumbnail sheets along the bottom in three separate panes.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[154]

The editor is much easier and productive to use if you overlay these three
panes into one tabbed collection. To do this, click on one of the header tabs (say
the Diagram to start) and drag (keeping the mouse button held down) the tab
into the center of an adjacent pane (similar to the Messages one). When you
see a small message box appear entirely in the center of that adjacent pane (as
seen in the following screenshot), then you can release the mouse button to
dock the two panes together, and then repeat for the third pane.

You should end up with a combined tab set that looks similar to the
following screenshot:

The Diagram – Property Inspector view is the most used view during the
creation of mappings, so click on that tab to bring its view to the front.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[155]

12.	 We can now start building the Load CUSTOMER mappings. We begin by
specifying the target for the interface. We expand the Oracle DataMart
node in the Models view of the Designer Navigator, and drag-and-drop
the CUSTOMER datastore into the top-right pane of the Mapping editor.
When we 'drop' the CUSTOMER datastore there, it expands to show its
column names, their datatype categories, and the datastore's primary
key field. Datatypes are indicated by the letters that precede the column
names as shown in the following screenshot:

13.	 Now we drag-and-drop the CUSTOMER_MASTER datastore from the Oracle
Customer System model into the top-left pane of the editor (the sources
area). When we drop the datastore, an Automap dialog appears. We click
on Yes to invoke automatic mapping.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[156]

14.	 ODI will perform mappings based on exact column name match and will add
indicators in the target area to show where any transformation code in the
mapping is to be executed.

15.	 We need to add and amend some mappings. So we first drag-and-drop
the CUSTID column from the CUSTOMER_MASTER source datastore into
the CUSTOMER_ID column in the target datastore. This will perform a
"straight-through" mapping (the data will be unchanged) of the source
data into the target.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[157]

16.	 Next, we can see that the target datastore has the PREFIX column as a
numeric datatype (the n indicator, highlighted in the previous screenshot),
whereas the source datastore has it stored as a varying character value. If
we click on the PREFIX column in the target datastore pane, we see the
mapping implementation in the Property Inspector below the target and
sources panes:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[158]

17.	 We change the text in the Implementation text box in the Property Inspector
to read:
case (CUSTOMER_MASTER.PREFIX)
 when 'Mr' then 1
 when 'Mrs' then 2
 when 'Miss' then 3
 when 'Dr' then 4
else 1
end

We click on the green tick icon above the textbox to force ODI to perform
a syntax check of the implementation code we have entered. If you see any
errors, you want to correct them before proceeding.

18.	 The next mapping that we will alter is the one that converts the source's
DATE_OF_BIRTH column into AGE for the target. We drag the DATE_OF_BIRTH
column from the sources area and drop it in the target's AGE column, then
we click on that column in the target area and change the code in the
implementation box to:
trunc(months_between(sysdate,CUSTOMER_MASTER.DATE_OF_BIRTH)/12,0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[159]

Once again, we use the syntax checker against our implementation code.

19.	 We drag the SALES_PERS_ID from the source into the SALES_PERSON_ID
column into the target to set a straight-through mapping on that column.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[160]

20.	 There is no source data for the CREATE_DATE and LAST_UPDATE target
columns. Instead these will be used to record modification information on
the target information. We click on the CREATE_DATE target column and
in the Property Inspector, we set the following mapping properties and
behaviors:

°° Active Mapping: Checked
°° Implementation: sysdate
°° Execute on: Staging Area
°° Insert: Checked
°° Update: Not checked

This means that the Oracle sysdate value will be evaluated on the staging
system (here, our target database) and entered into the CREATE_DATE target
column only when a new row is created. Here we are leveraging the SQL
engine capabilities and horsepower of the target Oracle database to perform
the date field transformation, while ensuring data audit quality by not
allowing updates to this field in this interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[161]

21.	 We do the same for the LAST_UPDATE column, but have this value set on both
insert and update operations.

22.	 Now that all the mappings are complete, we click on the Flow tab beneath
the target and sources area to show the interface flow that ODI has
constructed. You can see below that LKM SQL to Oracle has automatically
been selected as the mechanism to load the data from the source into the
staging area. This is because it is the only suitable KM for this action that has
been imported into the current project.

23.	 We click on the header bar of the Target (XE_on_local_as_ODITEMP)
box in the flow diagram and we see in the Property Inspector, which is at
the bottom of the screen, that IKM Oracle Incremental Update has been
automatically selected as the integration KM for the same reason. We
change the FLOW_CONTROL option value for this KM from <default>
true to false.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[162]

The FLOW_CONTROL option governs whether basic data
integrity controls (for example, value constraints, relationships,
and key violations) are applied by ODI to the flow of data just
before it is integrated into the final target datastore. This would
be performed by a CKM rather than having the target database
table reject the records itself. We didn't import a CKM into
our project as we'll be covering Error Management in a later
chapter, so that's why we're disabling flow control here.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[163]

24.	 We have finished building and configuring the Load CUSTOMER interface, so
we save all our work using the Save All icon in the ODI Studio main toolbar.
A dialog may appear asking if you want to lock the object (this interface).
This is to support multiple concurrent users working against the same work
repository, but since we're acting as the only developer in our environment
we can select Don't show me this window next time and click on No to
avoid locking the object.

25.	 We're now ready to test our interface! We click on the Run icon in the main
ODI Studio toolbar:

26.	 An Execution dialog box appears in which we can set our execution context,
execution agent, log level, or we can simply simulate the execution which
would generate the code for the interface but not run it (simulation is a new
feature of ODI 11g). Since we want to actually execute the interface using all
of the default values, we click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[164]

27.	 After a slight pause (while the interface code is generated), an Information
dialog box appears telling us that the execution session has started. We
dismiss this dialog box by clicking on OK, and we close the editor window
for the Load CUSTOMER interface.

If an error message screen pops up indicating that the session
is unable to start, then one or more fatal errors were detected
within the interface design and must be rectified before
attempting to execute.

We have now built and run an interface. Let's review the steps taken:

•	 We created a project, then located and imported the necessary Knowledge
Modules into that project to support the desired source and target
technologies.

•	 We created an interface, specified the target and source for that interface, and
had ODI automatically create the majority of the mappings for the interface.

•	 We then added to and modified the existing mappings, using simple,
straight-through mappings, database functions, and some fairly complex
SQL (the case…when mapping and the date of birth to age conversion).

•	 We then checked the interface flow and the KMs being used, and set the IKM
so that data integrity would not be selected (since we didn't import a CKM
into the project, we couldn't allow the IKM to invoke the CKM activities).

•	 We then saved and executed our work.
•	 It is important to note that we satisfied the requirements of moving and

transforming the data into the data mart solely by interacting with the ODI
Studio user interface. Very little SQL was required: the pre-built Knowledge
Modules, enhanced with the interface field mappings, did all the "heavy
lifting" of the SQL generation.

The next step is to see whether what we have built worked in the way that
was expected!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[165]

Checking the execution with the Operator
Navigator
This section will be our first introduction to ODI Studio's capability to show and
examine execution tree details, so that we can check our development as we go
along in an iterative and incremental manner. We will now do the following:

•	 Introduce you to the different views in execution data available in the
Operator Navigator

•	 Examine the execution session log for the interface we've just run so that
we can see the overall metrics

•	 Examine the detail of the steps executed and the code generated for us
by ODI

To look into the details of the execution of a job, we need to follow these steps:

1.	 We click on the Operator tab in the main ODI Studio Navigator pane.
The Operator word may not be visible, depending on the width of your
Navigator pane, but the Operator icon should always be shown.

Alternatively, you can select the ODI Operator Navigator option under
the View main menu item.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[166]

2.	 We see in the Session List view at the top of the Navigator that sessions can
be viewed by execution date, physical agent, session name, execution status,
any keywords associated with the session, the user who executed the session,
or a cover-all list of all executions in session number order.

All of these views (with the exception of the Keywords view) will show the
same session, identifiable by the session number—1111 in this case. The
green symbol with a tick icon shows that the session executed successfully.

A brief explanation of session numbers: If you run a process, your
session number will most likely be different from the one (1111)
shown in the previous screenshot. That number represents
session number 1 in a Work repository with an ID of 111. If
instead, it were the second execution session in a repository with
the ID of 100, the session number would be 2100.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[167]

3.	 If we close all the category nodes (for example, Date) except All Executions,
and double-click on (or right-click and select Open) the Load CUSTOMER
node that's still visible, an overview of the session will be displayed in the
right-hand side of ODI Studio. This shows the overall metrics for the session,
including duration, number of inserts, updates and deletes, and the execution
status of the session.

In this view we can see that 38 records were inserted, with no updates
or deletes.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[168]

4.	 Back in the Session List view, we expand the Load CUSTOMER session node
and we see that our session has one major step—also called Load CUSTOMER
(the name of our interface). When we expand the 1 – Load CUSTOMER node,
we can see all the steps that ODI created and executed to run the interface
(we can scroll up and down to see them all).

The steps labelled Loading are generated by the LKM; those labelled
Integration are generated by the IKM. The steps marked by a yellow
warning triangle report a warning—in this case because they are both steps
to delete ODI temporary tables that may not exist at the start of execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[169]

5.	 The 3 – Loading – SrcSet0 – Load data step is where the LKM loads the
source data into the loading temporary table in the staging area. We can open
this step by double-clicking to view the execution statistics.

We can see that 38 rows were processed. In this case the values in the fields
for the number of inserts, updates, and deletes refer to the temporary loading
work table (C$) here. We now close the session task tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[170]

6.	 We return to the session task list and select the 6 – Integration – Load
CUSTOMER – Insert flow into I$ table step.

7.	 We double-click on the 6 – Integration – Load CUSTOMER – Insert flow
into I$ table step. This step will show the activity performed against the
temporary integration work table (I$), most of whose data will eventually be
integrated into the target table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[171]

8.	 When we click on the Code tab, the Code view shows the SQL generated on
the source for this step (the CUSTSYSTEM database) and the corresponding
code for the step's target (the loading work table in the staging area). By
scrolling down we see in the code for the source that the mappings we
created in the interface to be executed on the source are included here,
including the PREFIX and AGE transformations.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[172]

9.	 We now close the window for the step and open the step 8 – Integration –
Load CUSTOMER – Insert flow into I$ table. This is the step in which the
mappings configured to be executed in the staging area will be executed. The
code shows the two references to sysdate that we set for the CREATE_DATE
and LAST_UPDATE audit columns.

10.	 We can now close the Session Task : Integration tab window and the
Session : Load CUSTOMER tab window and return to the Designer tab.

11.	 In the Models view, we open the CUSTOMER datastore in the Oracle DataMart
model in an editor and on the Definition tab, we click on the Refresh icon
next to the Total: field in the Number of Rows section. We can now see the
field updated to a value of 38.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[173]

12.	 Another way to view the record count (and data) is by opening the
Load CUSTOMER interface in an editor, going to the Mappings page,
right-clicking on the target datastore title bar and selecting Data….
You would immediately see that there are 38 records.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Databases

[174]

Also take note of the various columns on which our transformations have
occurred; scrolling to the right we will now see that the PREFIX column has
a numerical value, the AGE field has been calculated, and the DATE fields
have been populated.

The number of records shown in either of the views
previously mentioned do not necessarily reflect the
correctness of the integration process; perhaps there were
unintended record deletions or updates where inserts
were expected. It's always best to verify the integration
steps summaries as they give much more details on
specific counts and what events really happened.

13.	 Close the Data Editor dialog and the Interface editor.

In these past few steps we've:

•	 Used the Operator Navigator and seen the multiple category views through
which you can examine execution sessions

•	 Viewed overall execution session metrics
•	 Drilled down through the levels of session information to the individual

executed steps
•	 Seen how those steps are linked to KMs used by the interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[175]

•	 Examined the actual SQL code executed at a couple of stages in the interface
flow, specifically the steps where the source and staging area mappings
are implemented

•	 Checked that the target table has been loaded with the correct number of
records and seen that key data transformations have been implemented.

Summary
In this chapter we covered most of the basics that will help you become very
productive with ODI and took our first step towards implementing our PO
processing solution—we populated our data mart with the enriched and
transformed source data from our Customer System that met the data mart
business requirements.

We began by configuring ODI's view of the physical data architecture for the
source and target systems using two data servers, the Physical Schemas that they
hold (one with a separate work schema), and linking these Physical Schemas to
Logical Schema names via the Global context.

Next we reverse-engineered metadata from those schemas into ODI models and
in one case, used selective reverse-engineering. This task resulted in two datastore
definitions, namely, CUSTOMER_MASTER in the Oracle Customer System model
and CUSTOMER in the Oracle DataMart model.

We then created a new project and imported the Loading and Integration
Knowledge Modules that would be needed to build our interface.

Next we created a Load CUSTOMER interface that used CUSTOMER_MASTER as a source
and CUSTOMER as a target. During this process, we used the Automatic Mapping
feature and then supplemented this activity with a few manual mappings and
transformations and enriched the data with some timestamps that could be later
used for audit purposes. We also checked the Knowledge Modules being used by the
interface and changed an IKM option to amend the flow to avoid any data integrity
checks. We then executed the interface.

In the last few steps, we used the Operator Navigator to drill down and examine
the execution tree for our interface, taking a look at the SQL code it executed. We
made sure that the correct number of records had been uploaded and that the key
mappings and transformations had been successfully implemented.

In the next chapter we'll add some additional complexity by introducing joins and
lookups, heterogeneous data sources, data aggregation, and adding a JDBC driver
to ODI 11g (something we didn't have to do for our Oracle databases because the
Oracle driver came pre-installed with ODI).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL
ODI's normal operating environment is being surrounded by a number of different
database systems. We saw in the previous chapter that ODI comes ready for use
with Oracle databases, having the required JDBC driver installed automatically out
of the box. However, ODI's heritage means that there doesn't have to be an Oracle
database anywhere within ODI's reach. So let's take a look at how ODI interoperates
with another popular database, MySQL, that historically had nothing to do with the
Oracle Corporation.

The reason for choosing MySQL is simply to illustrate some additional steps that
must be performed when using many third-party databases. These steps are required
to make the required JDBC drivers for those databases available for ODI to use.

In the previous chapter we integrated data from one database table into another
as a simple foundation example. In this chapter we're going to extend the skills we
gained as follows, by incorporating a number of new elements in our work while we
continue to integrate data into the data mart for our examples:

•	 Before we start developing anything new we will add an additional
JDBC driver to ODI Studio to allow it to access and process the MySQL
data and metadata

•	 We are going to use two methods to configure some joins between source
datastores to enrich our target data

•	 We will introduce some aggregation in our transformation mappings to
produce summary data in our data mart

•	 We will use "simulation" in ODI to examine the automatically generated
runtime code before it is executed

In addition to these new tasks, we'll be repeating a number of operations—with some
slight variations—that we performed in the last chapter, so you should begin to feel
at ease with some of the most common tasks in ODI 11g.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[178]

What you can and can't do with MySQL
We'll be using MySQL for hosting our source data in this chapter, but MySQL is
equally suitable as a target or for use as a staging area.

MySQL is one of the platforms listed in the Topology Navigator's Technologies
view, so ODI knows about its database functions, datatype capabilities, SQL
syntax variations and other characteristics. So the additional work to use a
database such as MySQL with ODI is in fact minimal.

However, you cannot use MySQL (at least versions up to and including v5.1) as a
host for ODI's Master or Work repositories. Because MySQL has a limitation in its
SQL capability. This limitation is not present in all non-Oracle relational databases
by any means and should you wish to use a different database for hosting ODI
repositories you should consult the following ODI Certification Matrix on the
Oracle support website at http://oracle.com/technetwork/middleware/
data-integrator/odi-11gr1certmatrix-163773.xls.

ODI 11.1

Repository Database Certification Matrix
Oracle 10.2.0.4+

Oracle 11.1.0.7+

Oracle 11.2.0.1+

Microsoft SQL Server 2005

Microsoft SQL Server 2008

IBM DB2/UDB 9.7 and later FixPaks

IBM DB2/400 (V5R4+)

Hypersonic SQL 1.7.3+

Sybase AS Enterprise 15.0.x

Working with MySQL
In these step-by-step examples, we'll be adding product and inventory to our PO
Processing data mart from a product system database which is hosted in MySQL.
We're going to perform a mix of product data consolidation (combining base product
and product category information from separate source tables into a single target
table) and inventory data enrichment (converting a product number into a name).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

To do this we will use two different methods in ODI 11g for joining information from
two or more sources.

Since an ODI interface normally populates only one target datastore (though one of
the newer 11g Knowledge Modules allows you to work around this limitation), we'll
create two interfaces during this task—one for product information and the other for
inventory data. As it happens, our original requirements list stated that product data
was updated daily, whereas inventory information could be updated with a different
frequency, so separating out these two activities would have been necessary anyway.

Obtaining and installing the software
If you want to download and install MySQL to follow-up on the examples
provided here, the Community Edition of MySQL is free to download and use
from http://www.mysql.com/downloads/ or you can go to http://download.
oracle.com/ and follow the download link for MySQL from there.

The documentation for MySQL, including installation notes is available at
http://dev.mysql.com/doc/.

The free version of the MySQL Connector/J, the JDBC driver to use (v5.0.8), is
available for download at http://dev.mysql.com/downloads/connector/
j/5.0.html#downloads.

Do not use the latest version of the MySQL JDBC driver. On the main
download site for the MySQL components you will see that there
are driver versions later than v5.0.8 available for download.
However when writing this book, the authors encountered
operational errors when driver version 5.1.x was used with ODI
11g. These driver issues are not present in the v5.0.8 release.

Overview of the task
First we'll have to perform some infrastructure work, such as configuring ODI 11g to
use the MySQL Connector/J, the JDBC driver, creating the topology and model for
the MySQL source data, and extending the ODI model of the target PO Processing
data mart to include the remaining target table definitions.

After that we'll create two interfaces, one to integrate the product data, and the other
to integrate the inventory data.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[180]

Integrating the product data
This activity requires the combining of source data for products and product
categories into a single target table.

Product data target, sources, and mappings
The target PRODUCT table in the PO Processing DATAMART schema has the
following structure:

There are two source tables in the prodsystem MySQL schema, the first of
which contains the base product data and is called product_base:

The second source table contains information used to categorize the products
and is called product_category:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[181]

The column mappings for this interface are mostly straightforward and are as follows:

•	 The target PRODUCT_ID, PRODUCT_NAME, COST_PRICE, and LIST_PRICE
columns are all populated from similarly named columns in the
product_base table

•	 The target PRODUCT_TYPE column can be populated by the source
category_name column in the product_category table, linked by
category_id

•	 The target PRODUCT_PARENT_TYPE column can be populated from the same
category_name source column, but it has to be coordinated via a self-join
link from the category_parent_id column back into the same table's
category_id column

•	 We have already populated a LAST_UPDATE column in the previous chapter,
so we know how we'll achieve that mapping

Product interface flow logistics
Our source is a MySQL database and our staging area and target will be in the
Oracle data mart. That means we can use the same Loading and Integration
Knowledge Modules as we used in the previous chapter.

The complete interface process flow is displayed in the following figure:

MySQL:

Customer

System Server

PRODUCT

table

product_base

table

product_

category

table

LKM

Oracle:

Data Warehouse

Server

IKMSS_0

IKM Oracle Incremental Update

LKM SQL to Oracle

Joins

DATAMART
schema

ODITEMP
schema

prodsystem
schema

Once again, we won't be performing any data quality checking, so we won't be using
any CKMs.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[182]

Integrating inventory data
The inventory data that we have in the prodsystem MySQL schema is provided by
the product for each warehouse in our estate. The target data mart only needs sum
totals, so we need to perform aggregation of the source data and we also need to
perform a look-up on some of the product data that we will have just integrated in
the previous interface.

Inventory target, sources, and mappings
The target for this interface is the INVENTORY table, which has the following structure:

The main source for this information will be the MySQL warehouse_stock_level
table as follows:

However, we'll also be reusing the DATAMART schema's PRODUCT table to provide
some information in this interface, for reasons that will become clear shortly.

The column mappings are as follows:

•	 The PRODUCT_ID target column is populated from the similarly named
column in the warehouse_stock_level source table.

•	 The PRODUCT_NAME column could have been populated by joining with the
product_category source table again, but instead we will use the same
information from the PRODUCT table in the DATAMART schema that we will
have previously loaded. This is because it is already in the target system, so
it won't need to be transported across any network and performance is likely
to be improved. When dealing with huge data volumes, considerations such
as these can make a considerable difference. The figure of the flow will make
this clearer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[183]

•	 We have another LAST_UPDATE target column that will be populated using
the same mapping as before.

Inventory interface flow logistics
Again we can use the same LKM and IKM. The IKM is the component that will
link the data mart PRODUCT table's information with the source data from MySQL
to populate the INVENTORY table's columns as shown in the following figure:

MySQL:

Customer

System Server

PRODUCT

table

warehouse_

stock_level

table

LKM

Oracle:

Data Warehouse

Server

IKMSS_0

IKM Oracle Incremental Update

LKM SQL to Oracle

DATAMART
schema

ODITEMP
schema

prodsystem
schema

INVENTORY

table

Instead of performing a database join to combine the data (as we will use for the
product data interface) we will use an ODI 11g Lookup. In fact we will choose a
lookup implementation that is resolved down to a join, but which will allow us
to explore another capability of ODI 11g.

Using MySql with ODI
Building on the Data Topology steps we performed in the previous chapter, we'll
be completing this exercise in a number of steps as follows:

•	 Adding the MySQL JDBC driver: To enable ODI Studio to access
the MySQL schema and data

•	 Expanding the Topology: To add the MySQL server and schema to
ODI's metadata

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[184]

•	 Reverse-engineering revisited: To create a model based on the MySQL
schema that we can use for our source data and also to complete the model
of our PO Processing System data mart target

•	 Preparing to move the product data: By creating an interface that enriches
the base product data from the source by joining some source datastores

•	 Using simulation and execution: To examine the generated code before
it is executed, and then actually executing the code and checking some
key metrics

•	 Moving the inventory data: Including some aggregation and enrichment
achieved through the use of a an ODI lookup, followed by checking some
of the execution metrics

Adding the MySQL JDBC driver
This is a very short section, since adding JDBC drivers to ODI 11g Studio is very
simple. Follow the given steps:

1.	 Save all your work in ODI Studio and exit out of the program.
2.	 If you haven't already done so, extract the MySQL Connector/J driver JAR

file called mysql-connector-java-5.0.8-bin.jar from the ZIP file or
"tarball" you downloaded from the MySQL Connector/J download site and
copy it to the location for your particular operating system given in the ODI
11g Installation Guide. For example, for Windows users, this is %APPDATA%\
odi\oracledi\userlib, where %APPDATA% is the Windows Application
Data directory for the user, which is usually located at C:\Documents and
Settings\<user>\Application Data.

3.	 That's it! When we restart ODI Studio, it will scan that directory for any
JAR files and will add them to its classpath automatically.

Adding drivers and classes in other locations
The directory to which you copied the JDBC driver (and this
doesn't just work for MySQL, it's for all additional JDBC drivers)
includes a file called additional_path.txt. If you want
to add classes into ODI Studio's classpath (for example, JMS
libraries) that you don't want to copy into this directory, you
can amend the contents of the additional_path.txt file
(following the examples it includes), to add those other class and
JAR files that are located elsewhere into ODI Studio's classpath.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[185]

If you installed the Standalone Agent for ODI, and/or the Java EE agent (and
created a WebLogic domain for the ODI Java EE components), then you must also
make the JDBC driver available to these agents. The process for each type of agent
is as follows:

1.	 To make the driver available to the Standalone Agent, copy the driver
JAR file (mysql-connector-java-5.0.8-bin.jar) into the <ODI_HOME>\
oracledi\agent\drivers directory and restart the Agent (if it is running).
Similarly to ODI Studio, the Standalone Agent automatically scans this
directory for driver and class files each time it starts.

2.	 To add the driver to a Java EE Agent, follow the vendor's instructions for
adding a third-party JDBC driver for the specific flavor of application server
you are using to host the Java EE components. If this is a WebLogic Server,
you should add the driver JAR location to the WEBLOGIC_CLASSPATH entry
in the <WL_HOME>\common\bin\commEnv.cmd file, where <WL_HOME> is the
wlserver_10.3 directory where WebLogic server is installed (for example,
C:\Oracle\Middleware\wlserver_10.3). The WebLogic server instance
that hosts the Java EE Agent will then need to be restarted.

You may find a v5.0.3 version of the MySQL Connector/J
JDBC driver in your WebLogic server installation below
<WL_HOME>\server\ext\jdbc, but this isn't added into
the server's classpath by default. The v5.0.8 driver can be
copied to the same location and then explicitly added by
altering the commEnv.cmd file as explained previously.

So for ODI Studio and the Standalone Agent, adding a new JDBC driver is simply a
matter of copying the driver archive into a specific folder location. For the Java EE
Agent, it depends on the flavor of the application server, but usually it's just a case of
adding the driver archive to the server's classpath definition.

Expanding the topology
In this section we will perform the following:

•	 Add a reference to the MySQL data server to the physical architecture,
specifying the appropriate credentials, driver class, and connection URL

•	 Create a physical schema reference to the prodsystem MySQL database
holding the source product and inventory data

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[186]

To define the Physical Architecture for MySQL, we have to do the following:

1.	 We start ODI Studio, connect to your Work repository and then select the
Topology tab to start using the Topology Navigator.

2.	 We expand the Technologies node in the Physical Architecture node. Since
we previously selected Hide Unused Technologies and at this point MySQL
is one of those "unused" technologies, we need to toggle that option in the tab
header menu (the factory icon) to reveal the complete technology list.

3.	 We add a new MySQL data server the way we added the Oracle ones in the
previous chapter (right-click on the MySQL technology node), and we set the
following values on the Definition tab:

°° Name: Local_as_prodsystem
°° User: prodsystem
°° Password: welcome1

If you are following along with your own installation of MySQL,
make sure to create the prodsystem user (and its password) for
the prodsystem schema.

4.	 On the JDBC tab, we must manually enter the driver and URL details,
as the search icons to the right of these fields do not yield any MySQL
Connector/J information. The values to enter are as follows:

°° JDBC Driver: com.mysql.jdbc.Driver
°° JDBC Url: jdbc:mysql://localhost:3306/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[187]

The URL value given previously assumes that MySQL
is running on the local computer and that it is listening
on the default port of 3306. If either of these is not true
for you, then you must change the URL accordingly.

5.	 We test the connection (acknowledging the dialog boxes along the way)
using the Local (No Agent) option. Once we see the Successful Connection
dialog, we dismiss it and close the Data Server editor.

6.	 We create a new Physical Schema on our new MySQL Data Server reference
(right-click on the Local_as_prodsystem node). On the Definition tab set
both the Database (Catalog) and Database (Work Catalog) values to the
prodsystem schema.

Note that on this page the term for the data area in MySQL
is Database (Catalog), whereas when defining our ODI
Physical Schemas for Oracle systems it was Schema
(Schema). It's these differences between vendor/system
terminologies that ODI hides from the data integration
designer by the use of Logical Schemas and models.

7.	 On the Context tab, we add a new Context mapping to a Logical Schema,
entering MySQL_PRODSYSTEM as theLogical Schema name.

We save our work and close the Physical Schema editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[188]

We've now expanded our Physical Architecture to allow us to access the MySQL
metadata by performing actions that were almost identical to adding references to
Oracle systems. The slight differences were as follows:

•	 We had to enter the driver class and URL manually, because MySQL
Connector/J is not included in the search lists in the JDBC tab of the
Data Server editor

•	 The field labels where we set the schema names were different, but we still
performed the same actions to select the data and work areas

Now that our Topology is configured, we will be able to import metadata from
MySQL, and we can get ready to build interfaces.

Reverse-engineering revisited
Next we're again going to help build familiarity with ODI by creating a new model
based on the MySQL schema metadata. We also need to reverse-engineer the
remainder of the metadata in the data mart target system.

To reverse-engineer the metadata from MySQL, we will do the following:

1.	 Models are managed in the Designer Navigator, so we click on the Designer
tab in the left-hand pane.

2.	 We expand the Models view, then click on the menu icon in the Models
view's title bar, and choose the New Model option.

3.	 On the Definition tab, we name the model MySQL Product System, then
we choose MySQL as the technology, and check that MySQL_PRODSYSTEM is
selected as the Logical Schema.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[189]

4.	 Next, we click on the Reverse Engineer tab to check that the Global context
will be used. Then we click on the Reverse Engineer button in the left-hand
side of the Model Editor title bar, and Yes in the confirmation dialog to save
the model and proceed, and then we close the Model editor.

5.	 We expand the new MySQL Product System node in the Models view
and we can see that three MySQL tables have been reverse-engineered
as ODI datastores.

6.	 We can either double-click on the Oracle DataMart model node or right-click
on Open to open the Model editor.

7.	 We click straight through to the Selective Reverse-Engineering tab—as the
Selective Reverse-Engineering and New Datastores checkboxes should
already be ticked, we click on the Objects to Reverse Engineer box to reveal
the tables we haven't already reverse-engineered.

8.	 The remaining tables are all pre-selected as seen in the previous screenshot,
so we click on the reverse engineer button in the Model editor's title bar. We
then click on the save all icon in the ODI Studio main toolbar and we close
the Model editor pane.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[190]

9.	 We expand the Oracle DataMart model node and we can see all the tables are
now represented as datastores in the ODI model.

We now have the MySQL source tables and the Oracle target tables represented
as datastores in ODI, ready for us to create our interfaces to populate the product-
related data mart tables.

Preparing to move the product data
Next we're going to build an interface to build and enrich the product data. The task
requirement means that we'll need to perform some joins between the source tables
as follows:

•	 A join between the product_base and product_category sources to expand
the product type code into a textual name

•	 A self-join from product_category back into itself to retrieve the parent
category name for each product

To perform these operations, we will create an interface as follows:

1.	 We create a new project via the menu button in the Projects view title bar
and we call the new project Chapter 6.

2.	 We right-click on the Knowledge Modules node in the Projects view in the
Designer Navigator, and select and import IKM Oracle Incremental Update
and LKM SQL to Oracle as before.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[191]

3.	 We expand the First Folder node, then right-click on the Interfaces node and
select New Interface.

4.	 We name the interface Load PRODUCT and we select the Mapping tab at the
bottom of the Interface editor.

5.	 We drag-and-drop the PRODUCT datastore from the Oracle DataMart model
into the target datastore area of the Mapping editor.

6.	 We drag-and-drop the product_base datastore from the MySQL Product
System model into the sources area of the editor and we accept Automatic
Mapping. However, no mappings are performed—the column names are
in different cases for the source and target, so no mapping is done for us.
Instead, we map product_id to PRODUCT_ID by drag-and drop, and we map
the product_name, cost_price, and list_price source columns to their
respective target counterparts in the same way.

7.	 We drag the product_category datastore from the MySQL Product System
model and we drop it just to the right of the product_base datastore in the
sources area of the Mapping editor, this time rejecting Automatic Mapping,
as it won't help anyway.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[192]

8.	 We drag-and-drop the category_id column from the 1 - product_base
(PRODUCT_BASE) source datastore onto the category_id column in the
2 - product_category (PRODUCT_CATEGORY) source datastore.

9.	 On releasing the mouse button to "drop" the column, a join marker appears
with links from either side to the two columns. We click and drag the join
marker so it sits between the two source datastores.

10.	 We drag a second copy of the product_category datastore from the MySQL
Product System model and drop it just beneath the first one in the sources
pane of the Mapping editor. It doesn't matter whether we click on Yes or No
in the Automatic Mapping dialog as you may have noticed that we have no
matching column names.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[193]

In the Property Inspector, below the sources pane, we can see that the second
copy of the datastore has been given an Alias of PRODUCT_CATEGORY1. We
change this to PRODUCT_PARENT (highlighted by the red box in the following
screenshot) to more easily distinguish it from the first copy (we can change
the alias name for each of the source datastores if we want to). Don't forget to
hit Return after changing the name when you perform this operation.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[194]

11.	 This time we drag the category_parent_id column from the 2 - product_
category (PRODUCT_CATEGORY) source datastore onto the category_id
column in the 3 - product_category (PRODUCT_PARENT) datastore to create
a join between these two sources.

We then reposition the resulting join marker as before. In the Property
Inspector we can see that the join clause uses the datastore aliases in its
implementation text (it is also here that you can designate the type of join
required—left, right, full, and so on).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[195]

12.	 We can see that the target's PRODUCT_TYPE and PRODUCT_PARENT_TYPE
columns are both of varying character type—the same as the category_name
column from the product_category sources. Therefore we can populate
these target columns by dragging the category_name columns from each of
the product_category source datastores to the appropriate target columns,
as shown in the following screenshot:

13.	 The LAST_UPDATE target column has the same mapping as was used in
our previous task, namely an Active Mapping and an Implementation
of sysdate, executed in the Staging Area for both Insert and Update.
That completes our mappings, so now we need to configure the flow.

We have to make sure that the LAST_UPDATE mapping
will be executed in the Staging Area, and not the Target
Area, or we would see some warning messages when
we save the interface. These are related to ODI's ability
to ensure that the database's NOT NULL condition on the
LAST_UPDATE column is enforced.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[196]

14.	 We click on the Flow tab and we see that our two joins are going to be
performed on the source system, which will reduce the "traffic" of data
between the source and the target systems.

15.	 We click on the title bar of the source system in the Flow editor and in the
Property Inspector below the diagram. In the Property Inspector, we can
now select the LKM we just imported to define which loading mechanism
will be used for our interface. We do the same for the target system, selecting
the newly imported IKM and set the FLOW_CONTROL option to false. We
save our work at this point.

We've finished building this interface, which contains two joins as follows:

•	 One between the product_base and product_category datastores to
allow us to populate the PRODUCT_TYPE target column with the product
category name

•	 Another that links the product_category back to itself (using an alias,
which we changed) to enable us to retrieve the parent category name
for the product_parent_type field in the target PRODUCT datastore

Before we run the interface, we'll examine the code that ODI will generate based
on our design work on this interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[197]

Using simulation and execution
In this short section we will do the following:

•	 Use the new ODI 11g simulation capability to view the generated code before
execution

•	 Execute the interface and check some key metrics
The steps to simulate an execution and to run the code are as follows:

1.	 We click on the Execution link in ODI Studio's main toolbar, but when
the Execution dialog appears, we select the Simulation box before
clicking on OK.

2.	 A Simulation report dialog appears which allows us to scroll through all of the
steps and tasks within each step, viewing the executable code and operational
parameters for each task. We have one step here, that is the execution of the
Load PRODUCT interface, but there are a number of tasks that comprise this step,
each task being generated from the appropriate Knowledge Module. As we
scroll down through the simulation report we can see that the first task was to
drop a temporary loading table (with a C$_ prefix) from our staging area (the
ODITEMP schema in our oracle instance).

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[198]

3.	 The following screenshot shows a small portion of the simulation report:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[199]

4.	 If we scroll down further to the third task we see the SQL generated for
execution on the source system to extract the information from MySQL.

This shows the use of the datastore aliases in the generated code, together
with the join clauses we constructed graphically.

5.	 Just below the command for the source is its counterpart for the target
system. This uses the output from the source query to insert into the loading
table by the use of bind variables—all this being done behind the scenes
for us automatically. You will notice that since this task loads data into the
staging area, the column that is populated by a staging area mapping (the
LAST_UPDATE column) is not included in the loading table.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[200]

6.	 Having had a quick look at the generated SQL, it's time to actually execute
the interface to move the data. We close the Simulation dialog and click
on the Execute toolbar link again, this time executing the interface without
simulation.

7.	 This time we see an information message that a session has started, which we
can dismiss.

8.	 Opening the Operator Navigator (leaving the Interface editor open), we
expand the All Executions node and then we open the Load PRODUCT session
(double-click or right-click on Open). We see that 67 records were inserted
with no updates, deletes, or errors.

9.	 We close the Session: Load PRODUCT tab and back in the Interface editor
we click on the Mapping tab, we right-click on the Target Datastore –
PRODUCT title bar and we choose Data... to see the newly inserted records.

The Data Editor window initially shows Record 1 of 50, but if we click on
the Move to last row button then we see that in fact 67 records exist (the
Data Editor window retrieves the datastore records in batches—50 records
at a time).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[201]

10.	 If we scroll through the records we see that there are three parent category
names – Media, Electronics and Office, which have been retrieved and
populated by the join from product_base into product_category and that
datastore's self-join (driven by the alias we renamed to PRODUCT_PARENT).

11.	 We close the Data Editor dialog and the Load PRODUCT interface editor.

We have seen, rather than executing the interface and then looking at the code that was
executed, we used ODI simulation to view the code before (and without) execution.

In this interface we used a couple of joins on the source side—even if one of the joins
was from a table back onto itself. In the next interface, we'll use a join in a different
way and we'll add some data aggregation for good measure.

Moving the inventory data
In this section, we will perform the following:

•	 Create another interface, this time to move inventory data from our MySQL
Product System into our PO Processing data mart

•	 We'll use an ODI Lookup as an alternative join mechanism, this time
retrieving data from the PRODUCT table on the target (that we've just loaded)
to enrich the inventory information

•	 The data from the source system will be aggregated across all warehouse
holdings to have a single total for each product

•	 We'll then execute the interface and have a look at the resulting information
and compare it with the source inventory data set

The steps required to implement this new interface are:

1.	 With ODI Studio still open, we click on the Designer tab to return to the
Designer Navigator.

2.	 We create another new interface in First Folder in the Chapter 6 project and
we call it Load INVENTORY.

3.	 In the Mapping editor, we use the INVENTORY datastore from the Oracle
DataMart model as the target and the warehouse_stock_level datastore
in the MySQL Product System as the source (once more there are no
Automatic Mappings, as the case of the column names between the
datastores is different).

4.	 We map warehouse_stock_level.product_id to INVENTORY.PRODUCT_ID
via drag-and-drop.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[202]

5.	 We do the same for the source quantity_on_hand column, mapping it to
the target STOCK_QTY column. However, this not complete, as we will see.
We know we have just populated the target PRODUCT table with 67 records,
but how many inventory records do we have? We right-click on the
warehouse_stock_level datastore in the Interface editor's sources pane
and select Number of Rows.... The Data Editor dialog shows that there are
in fact 601 source inventory records. This is because the source table holds
inventory records from a number of different warehouse locations, so we
need to aggregate them.

6.	 We close the Data Editor dialog, we click on the target STOCK_QTY column,
and in the Implementation field in the Property Inspector we change the
implementation to SUM(WAREHOUSE_STOCK_LEVEL."quantity_on_hand")
and also change the mapping location to be executed on the Staging Area.

7.	 We add the (by now familiar) mapping for the target's LAST_UPDATE column,
that being an Active Mapping of sysdate executed on the Staging Area for
Insert and Update.

8.	 We still need to populate the target's PRODUCT_NAME column and for
this we're going to use a Lookup rather than a join, simply to use a
different approach. We click on the Add a new Lookup icon in the
source area's toolbar.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[203]

9.	 The Lookup Wizard starts and displays screen 1 of 2.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[204]

The Driving Table is pre-selected as warehouse_stock_level, as we only
have one source table in our Mapping diagram. If we had more in our
diagram they would all be listed in the left-hand field and we would have
to select the appropriate one to drive the lookup. However, in the Lookup
Table field we need to expand the Oracle DataMart model and select the
PRODUCT datastore (as in the previous screenshot), then click on Next.

10.	 In Step 2 of 2 we choose the column in each of the Source and Lookup
that hold the product ID values and we click on the Join button. We select
the option for the lookup to be executed on the Staging Area and we also
set the Lookup type to be an SQL left-outer join in the from clause. We
click Finish.

11.	 Back in the Mapping editor, the PRODUCT lookup is now linked to the
warehouse_stock_level source datastore.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[205]

12.	 We expand the PRODUCT lookup either by clicking on the little cross in the
top-left of the marker, or right-click and select View As | Symbolic. It is now
represented similarly to any other datastore in the sources area, but it has a
green title bar and a slightly different title icon. We right-click on the lookup
and select Optimize Shape Size | Height and Width to reveal all the column
details (we can always rearrange the size afterwards).

13.	 We drag-and-drop the PRODUCT_NAME column in the PRODUCT lookup into the
target PRODUCT_NAME column to create the final mapping.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[206]

14.	 We click on the Flow tab. Since we imported a suitable LKM and IKM into
our project for the last interface, they've been pre-selected here. However,
we must still set the FLOW_CONTROL on the IKM (click on the title bar
of the target server) to be false. The flow diagram shows (in the following
screenshot) that data from the warehouse_stock_level table is transferred
to a work table in the staging area (dotted arrow) where it is joined by
information from the PRODUCT lookup—driven by the warehouse_stock_
level table (solid arrow) and those two combine to populate the target
INVENTORY table (dotted arrow).

15.	 We click on the main toolbar's Execute button to run the interface, agreeing
to have the interface saved when prompted and not using simulation. We
dismiss the Session Started informational message.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[207]

16.	 We switch to the Operator Navigator and refresh its view (this can be done
by clicking on the left-most button in its header bar—seen with a red box
around it in the following screenshot).

17.	 We double-click on the Load INVENTORY session that reveals (in the Record
Statistics section) that 67 inserts took place.

18.	 We expand this session node and the Load INVENTORY step node to reveal
the task nodes. We double-click on the task called 8 - Integration Load
INVENTORY – Insert flow into I$ table and we click on the Code tab.
We saw in the example in the previous chapter that inserting rows into the
I$ (integration) table takes place in the staging area and this is where our
staging area mappings and lookups are executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with MySQL

[208]

By scrolling down the code window we can see that our lookup has been
included in a subquery within the main SQL statement and that a GROUP BY
clause has been added to make sure our SUM aggregation calculates correctly.

19.	 We close the Session Task and Session panes, returning to the Load
INVENTORY editor. We click on the Mapping tab and we view the data
now held in the target table. If we jump to the last row, we see that there are
67 records (aggregated from the 601 source records), one for each product.
We close the Data Editor window and the Load INVENTORY editor pane.

In this final section we've created an interface to load the inventory data, performed
an aggregation (the SUM SQL function), and used an ODI Lookup instead of the
previous join mechanism to translate the source inventory data's product ID into a
product name.

We then ran the interface, had a quick look at the generated staging area code
including the added lookup elements, and then briefly checked integrated
INVENTORY data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[209]

Summary
You should now be starting to feel comfortable with some of the common activities
in ODI. After first installing a third-party JDBC driver (MySQL), you were presented
with two examples which led us through a series of activities representing many of
the most frequently performed tasks within ODI.

Following those examples, we built several topology entries for data servers and
physical schemas and linked them to logical schema names via contexts. We then
used those logical schemas to reverse-engineer physical, vendor-specific metadata
into a logical, platform-independent data model.

We then created a new project folder and imported the specific Knowledge Modules
that would be needed based upon the interface requirements. We then built two
separate interfaces in order to populate a target from one or more sources linked
together either by joins or lookup relationships. We added simple column mappings
using both the Automatic Mapping or standard drag-and-drop methods. We also
augmented those mappings with more complex (yet still SQL) mapping code and
implemented an aggregation function.

In the last few steps, we executed the interfaces and viewed the execution tree
information using the Operator Navigator. We were also given an opportunity
to examine the results of an ODI simulation.

In the next chapter we are going to cover another popular SQL database,
namely Microsoft SQL Server, and introduce more features of ODI, including
using the Expression Editor to avoid having to remember and manually enter
SQL function names.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft
SQL Server

So far, we have seen how ODI can simplify and expedite data integration challenges
when using Oracle and MySQL databases. But what if your company has a site license
for Microsoft SQL Server? Or what if the majority of your database administrators
and data architects are from a SQL Server database background? Not to worry! ODI
supports Microsoft SQL Server as a first class database technology.

As we have seen in the previous chapters, ODI is effective at abstracting away the
nuances of a given database technology and virtually eliminating the hand coding
of SQL as compared to a traditional ETL project approach. Using our Purchase
Order example, we'll be covering the following topics in this chapter:

•	 Provide a third (Oracle, MySQL, and now SQL Server) exposure
of going through the process of working with ODI to create and test
integration interfaces

•	 Define a SQL Server Data Server using Topology Navigator
•	 Introduce the Expression Editor and learn how to generate SQL-based

transformation syntax without having to know the variants of SQL syntax
for each database technology

•	 Define and configure the use of temporary indexes within ODI Designer
to achieve faster interface execution

Example: Working with SQL Server
This chapter builds upon the incremental example scenario created in Chapter 5,
Working with Databases, and Chapter 6, Working with MySQL. It is best to read
through those chapters first.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[212]

Overview of the task
We will be accomplishing the following tasks in this chapter:

•	 Expand the ODI Topology to enable access to a SQL Server database
•	 Revisit the reverse-engineering process to create a model based on the

SQL Server source database and also to complete the model of our PO
processing system target data mart

•	 Prepare to move the Sales data by creating interfaces that enrich and
transform the source Sales Division data

•	 Check ODI interface execution using Operator Navigator, viewing the
execution status along with sampling portions of the SQL code generated
and run by ODI

Integrating the Sales data
In this example, we will be populating the Sales Person data to the data mart. This
new data mart supporting our PO processing example needs the Sales Person data
to accurately and appropriately calculate bonuses for a Sales Division.

Our PO processing example solution requires a subset of today's Sales Person
data to be appropriately moved to the corporate Data Warehouse at regular
intervals to reflect changes in the Sales Division personnel.

Source
The source data resides on a single instance SQL Server and is owned and
administered by the Sales Division business team. There are two tables of
interest in this SQL Server SALESSYSTEM database, the first of which contains
information on employees who hold the title of Sales Person and is called
SALES_PERSON_MASTER:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[213]

The second table was created to satisfy the needs of the business team to summarize
and analyze the sales team performance by geography and is called REGIONS:

Target
The target SALES_PERSON table in the data mart schema has the following structure:

The target REGIONS table in the data mart schema has the following structure:

Prior to the initial load from the SALESSYSTEM database, both SALES_PERSON and
REGIONS tables in the DATAMART schema have zero rows.

Integrations
The SALES_PERSON_MASTER and REGIONS tables have been identified as the two
tables having relevant and required data for populating the data mart. Initially, a
full load will be performed to populate the data mart with a near current version
of the operational sales data subset.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[214]

Two ODI interfaces are created for this example as follows:

•	 Load Sales Person: This interface loads SALES_PERSON_MASTER data from
SQL Server to Oracle as represented by the following figure:

SQL Server:

Sales Master Server

SALES_PERSON

table

SALES_

PERSON_

MASTER

table

LKM

Oracle:

Data Warehouse

Server

IKMSS_0

IKM Oracle Incremental Update

LKM SQL to Oracle

DATAMART
schema

ODITEMP
schema

SALESSYSTEM
schema

•	 Load Regions: This interface loads REGIONS data from SQL Server to
Oracle as represented by the following figure:

SQL Server:

Sales Master Server

REGIONS

table

REGIONS

table

LKM

Oracle:

Data Warehouse

Server

IKMSS_0

IKM Oracle Incremental Update

LKM SQL to Oracle

DATAMART
schema

ODITEMP
schema

SALESSYSTEM
schema

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[215]

Sample scenario
Now that we understand the requirements, goals, scope, and structure of the
source and target sales data definitions, let's start building another increment
of the PO processing example solution.

Expanding the ODI topology
In this section we will:

•	 Create the Topology references to our source and target servers and schemas
•	 Create a Logical Schema name for the newly created Sales schema in order to

be able to create our new Sales model in Designer Navigator
•	 Associate our Logical and Physical Schemas using the default Global context

Setting up the topology
We will go through the following steps in order to configure the topology:

1.	 If you are following along with your own installation of ODI, first make
sure your Oracle instance that hosts your ODI repositories is up and
running. Start ODI Studio Navigator (Oracle | Oracle Data Integrator |
Oracle Data Integrator Studio on the Windows Start menu) and connect
to your default repository.

2.	 We click on the Topology tab to switch to the Topology Navigator. Then we
expand the Technologies node in the Physical Architecture node.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[216]

3.	 We right-click on Microsoft SQL Server and select New Data Server. We
enter Local_as_SALESSYSTEM for the name of our source SALESSYSTEM data
server. We add sa and welcome1 for the User and Password information on
the Definition tab:

4.	 We select the JDBC tab to configure the JDBC Driver and JDBC Url for the
SALESSYSTEM data server. Then we click on the magnifying class to configure
the JDBC Driver:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[217]

5.	 After the JDBC Driver magnifying class has been clicked, the Drivers
dialogue appears showing available drivers. We select Microsoft SQL
Server Datadirect Driver, and then press OK.

6.	 Now it is time to set the JDBC Url. We click on the magnifying
glass to the right of the textbox associated with the JDBC Url. A
template entry for the JDBC Url is generated based on the selected
driver—jdbc:weblogic:sqlserver://hostname:port[property=val
ue[:…]]. We replace the template text with jdbc:weblogic:sqlserver://
localhost:1433

7.	 The JDBC tab entries now look similar to the following screenshot:

The JDBC Url used in this example assumes that SQL
Server is running on your local computer and installed
using the default port number 1433. Changes to the
JDBC Url value will need to be made if one or more of
those assumptions are not true.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[218]

8.	 We click on the Test Connection button (it becomes a button when the
mouse moves over it) in the header bar for the editor. When asked if we want
to save our data to continue, we click on Yes in the Confirmation dialog. We
press OK if an information dialog appears asking to register at least one
physical schema. Then we click on the Test button for the Test Connection
for: dialog. We leave the Physical Agent: selection as Local(No Agent).
Finally we see the Successful Connection dialog and we close the Data
Server editor. We have now created the ODI Data Server corresponding to
the SQL Server database.

Now that we have created our Data Server, we need to create
the Physical Schema(s) that contains data that we would like
to integrate. Having seen this Data Server to Physical Schema
to Logical Schema process with Oracle, MySQL, and now
SQL Server, you may have noticed a similar process being
used within ODI, independent of the vendor of the relational
database. That is not by accident. Data servers and Physical
Schemas are defined in Topology Manager and mapped to a
Logical Schema. The number of ODI users interacting with
Topology Navigator is typically much smaller than those
using ODI Designer.
In Designer, the only construct users need to be concerned
with is the last construct of the process mentioned earlier—the
Logical Schema.

9.	 We create a new Physical Schema on our new SQL Server Data Server node.
We right-click on the Local_as_SALESSYSTEM data server node located
under Microsoft SQL Server technology and select New Physical Schema.
On the Definition tab we set both the Database (Catalog) and Database
(Work Catalog) values to the SALESSYSTEM schema. We also set both the
Owner (Schema) and Owner (Work Schema) to dbo.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[219]

The name of the Physical Schema is automatically generated
and is read only.

10.	 As ODI Designer operations work using Logical Schemas within the
Designer user interface, and to support the functionality of contexts where
Logical Schema to Physical Schema mapping is performed, we add a Logical
Schema definition for our new Physical Schema. The Logical to Physical
Schema mapping is created on the Context tab of the Physical Schema
creation dialog. We add a new context mapping to a Logical Schema,
entering SQLSERVER_SALESSYSTEM as the Logical Schema name.

11.	 Finally we save our work and close the Physical Schema editor.

We've now expanded our Physical Architecture to allow us to access the SQL
Server metadata by performing actions that were similar to adding Oracle
(Chapter 5, Working with Databases) and MySQL (Chapter 6, Working with MySQL)
systems. The differences were as follows:

•	 We used the SQL Server JDBC driver provided with ODI 11g (weblogic.jdbc.
sqlserver.SQLServerDriver) on the JDBC tab of the Data Server editor

•	 The Physical Schema definition field labels where we set the schema names
were different, but we still performed the same actions to select the data and
work areas

We have now completed the additional physical resource definition and
configuration (think Topology Navigator when physical resources are involved) to
add the SQL Server connectivity and metadata enablement (Data Server, Physical
Schema, and Logical Schema creation). We can now move to the next step that
is, reverse-engineering SQL Server hosted Sales data. The remainder of the SQL
Server example scenario will focus on ODI Designer Navigator to create Model and
datastores and design interfaces for data movement and transformation.

Reverse-engineering the Model metadata
In this section we will create a SQL Server Sales model for our SALESSYSTEM
database. Without a model and the datastores contained within, we would
not be able to create our interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[220]

We will now create a Model:

1.	 We click on the Designer tab and expand the Models accordion
and subsequent tree view list.

2.	 Then we click on the menu icon in the Models view's title bar and
choose the New Model option

3.	 On the Definition tab, we enter SQLServer2008_ SALESSYSTEM,
choose Microsoft SQL Server as the technology and check that
SQLSERVER_SALESSYSTEM is selected as the Logical Schema.

4.	 We click on the Reverse Engineer tab to check that the Global context
will be used and on the Reverse Engineer button to the left-hand of the
Model editor title bar. We click on Yes in the confirmation dialog to save
the model and proceed, and then we close the Model editor.

5.	 Finally we expand the new SQLServer2008 SALESSYSTEM node
in the Models view and we see that two SQL Server tables have
been reverse-engineered as ODI datastores, namely, REGIONS and
SALES_PERSON_MASTER.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[221]

Creating interfaces and mappings
We now have the required SQL Server sales system source tables and the Oracle data
mart target tables represented as datastores in ODI. We are ready to build our Sales
data interfaces to populate and update the data mart for our PO processing example.
In this section, we will:

1.	 Create a project.
2.	 Create the Load Sales Person interface and mappings to satisfy the target

data mart requirements using enrichment, aggregation, and transformation
of the source data.

3.	 Take a quick peek at the new ODI 11g Property Inspector toolbar and
Property Inspector Auto Extend feature.

4.	 Examine and use the Expression Editor for improved productivity.
5.	 Create a temporary index for enhanced interface execution performance.
6.	 Create the Load Sales Region interface and mappings.

We start by creating a new project via the menu button in the Projects accordion
view title bar and enter Chapter 7 SQL Server as the project name, then we press
the save icon. Our ODI interfaces will be created in this project.

Load Sales Person interface
Now it is time to create our first interface for loading the source Sales Person data
residing on Microsoft SQL Server to the Sales Person table in the Oracle data mart.
To do so, we follow these steps:

1.	 We expand our Chapter 7 SQL Server project node and the First Folder
node it contains, then we right-click on the Interfaces node and select New
Interface. We then enter Load Sales Person as the interface Name and
keep Global as the Optimization Context. Finally we click on the Mapping
tab at the bottom of the Interface panel.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[222]

2.	 We drag-and-drop the SALES_PERSON_MASTER datastore from the SQL
Server 2008 SALESSYSTEM model into the source datastore area of the
Mapping editor.

3.	 Then we drag-and-drop the SALES_PERSON datastore from the Oracle
DataMart model created in Chapter 5, Working with Databases, into the target
datastore area of the Mapping editor and accept Automatic Mapping.

Property Inspector toolbar
The Property Inspector toolbar is new in ODI 11g. In addition
to the recommendations made in Chapter 5, Working with
Databases, regarding overlaying the three panes (Messages
– Log, Property Inspector, and Thumbnail) into one tabbed
collection, the Property Inspector toolbar can add additional
usability to the day-to-day mapping user experience. While
its presence may not be obvious when first using ODI Studio,
the toolbar offers additional user control of the size and visual
behavior of the frequently used Property Inspector dialog.
The first image in the toolbar is Enable/Disable Auto-Extend.
The default behavior is off. Press the Auto-Extend image on
the toolbar to turn on/off Auto-Extend and see if you like the
dynamic behavior of the Property Inspector dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[223]

Load Sales Person mapping
Now that we have defined the source and target of our Load Sales Person interface
we will start working on the mappings definition:

1.	 In our example, the primary key SALES_PERSON_ID was not mapped during
Automatic Mapping. We select the source SALES_PERSON_MASTER_ID
column and drag it to the target SALES_PERSON_ID column to populate the
mapping column.

2.	 The business requirement for DATE_HIRED is that the data is set once and
only once reflecting the original hire date of the Sales Person. By default,
both Insert and Update are turned on within the Mapping interface. We
uncheck the Update field to ensure no updates to this column will be made.

3.	 We find out that the warning indicator stays enabled, indicating potential
issues in our interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[224]

4.	 The warning message says the LAST_NAME data mart column is defined as
smaller than the LAST_NAME source column. While there are better solutions
for this particular issue than the SUBSTRING solution demonstrated next,
the mismatch in column size was intentionally designed into this example
to illustrate the use of the ODI Expression Editor. One solution is to
transfer only the first 20 characters of the 30 character format LAST_NAME
source column. But what SQL syntax for the substring operation should
be used—SQL Server? Oracle? The ODI Expression Editor provides a
graphical editor for those developing Mapping interfaces but who may
not be familiar with all of the SQL syntax nuances between Oracle, SQL
Server, DB2, Sybase, and so on.

Expression Editor: Use the Expression Editor for generating
the database SQL that is appropriate for execution on the
source, staging, or target database selected in the Execute
on radio button group in the Property Inspector dialog for a
given field being mapped. The Expression Editor is always
available to the Mapping Properties dialog user by pressing
the pencil symbol. When launched, the Expression Editor will
always specify the database platform being targeted for SQL
syntax generation appropriate for execution on that platform.
Standard editing functions (cut/copy/paste/undo/redo) are
also available using the toolbar buttons. In the expression
entry panel below the toolbar, you can directly type code for
execution, or drag-and-drop elements from the other panels.

5.	 We select the column LAST_NAME on the Target Datastore – SALES_PERSON.
We ensure that the Source radio button is selected on the Execute on: radio
button group of the LAST_NAME - Property Inspector dialog. Then we
launch the Expression Editor by selecting the pencil icon in the implementation
tab menu bar for the Property Inspector dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[225]

6.	 With the Expression Editor launched, we note that SQL(Microsoft SQL
Server) is present on the toolbar because Source (SQL Server) was selected
on the Execute on: radio button group.

7.	 As we've seen previously, there is a schema mismatch between the
SALESSYSTEM source and DATAMART target datastores for the LAST_NAME
column. While both are character data, the lengths of the columns are
different. By reducing the length of the source data to that of the target
length, the interface execution can proceed without issue. As we are looking
to operate on string data, one of the functions listed under Strings in the
technology function panel is a good starting place to look for our needed
solution. We expand the Strings function tree display. Then we select
the SUBSTRING function and drag it into the expression panel to build
the expression. The substring template SUBSTRING(<string>, <start>,
<length>) appears. The <string> parameter should be populated by
the LAST_NAME column of the SALES_PERSON_MASTER datastore residing
on SQL Server. We select LAST_NAME and drag it over the centre of the
<string> template parameter to obtain SUBSTRING(SALES_PERSON_MASTER.
LAST_NAME, <start>, <length>). We know the desired length (20),
and the desired starting character position (1), so by editing the <start>
and <length> template parameters, we obtain a complete operation of
SUBSTRING(SALES_PERSON_MASTER.LAST_NAME, 1, 20).

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[226]

This can be seen in the following screenshot:

8.	 We press OK to apply and close the Expression Editor dialog. The text
within the expression panel of the Expression Editor now appears in the
Target Datastore – SALES_PERSON mapping for LAST_NAME.
Since one of the benefits of using the Expression Editor is hiding the syntax
details and differences of operations across various database technologies, let
us examine the syntax generated for the substring operation for the Oracle
technology. Since syntax elements are defined by the technology that will
run the operation, we select Staging Area (the Oracle data warehouse) on the
Execute on: radio button group when the LAST_NAME target mapping column
is selected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[227]

9.	 We open up the Expression Editor again and notice that SUBSTR is provided
rather than SUBSTRING in the expression panel of the Expression Editor
dialog. This is because SUBSTRING is the appropriate operation when SQL
Server is the execution platform, and SUBSTR is the appropriate syntax when
executing on Oracle.

10.	 We again select Source on the Execute on: radio button group to restore
SQL Server as the execution platform for the LAST_NAME target mapping.

Automatic Temporary Index Management
The ability to create temporary indexes during interface execution is new in ODI
11g. When performing filter or join operations, ODI can create a temporary index
to provide enhanced interface execution performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[228]

To illustrate Temporary Index Management, we will follow these steps:

1.	 To illustrate Temporary Index Management, we will add two
filters on the source datastore—one to SALARY and the other to
COMMISSION_PERCENT:

2.	 We select each filter, and in the Filter Properties dialog, we specify the
following for SALARY:

°° Active Filter: checked
°° Implementation: SALES_PERSON_MASTER.SALARY<1000000
°° Execute on: Source
°° Create Temporary Indexes: None

and the following for COMMISSION_PERCENT:

°° Active Filter: checked
°° Implementation: SALES_PERSON_MASTER.COMMISSION_PERCENT>0
°° Execute on: Target
°° Create Temporary Indexes: Non-Unique

This will create a temporary index for COMMISSION_PERCENT each
time the interface is executed as the generated SQL for the COMMISSION_
PERCENT filter is executed on the Oracle target. Because sales commission
are not guaranteed unique, Non-Unique is specified for the temporary index
drop-down. A runtime error would occur and be visible within the ODI
operator if Unique was selected in the drop-down.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[229]

3.	 We have now completed the mappings. There are still a few additional tasks
to perform before we are ready to execute and test the Load Sales Person
interface. We switch from the Mappings tab to the Flow tab and we verify
that the proper Integration Knowledge Module has been set. We click on
the header bar of the Target (XE_on_local_as_ODITEMP) box in the flow
diagram and we can see in the Property Inspector below that the IKM Oracle
Incremental Update has automatically been selected. We decide not to check
the data being integrated, so we set the FLOW_CONTROL option to false.

We will execute the Load Sales Person interface shortly. Our next task is creating the
interface for loading the Sales region data. The steps are similar to creating the Load
Sales Person interface.

Load Sales Region interface
Region data allows business owners to analyze historical sales data by region. We
will now create the Load Sales Region interface which moves and transforms data
from the operational sales database to the data mart:

1.	 In Designer, we expand the Projects accordion view, the Chapter 7 SQL
Server project node, and the First Folder node it contains. We right-click
on the Interfaces node and select New Interface to create a new interface.
We enter Load Sales Region as the interface Name and keep Global as
the optimization context.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[230]

2.	 We click on the Mapping tab and drag-and-drop the REGIONS datastore from
the SQL Server 2008 SALESSYSTEM model into the source datastore area of
the Mapping editor. We also drag-and-drop the SALES_REGIONS datastore
from the Oracle DataMart model into the target datastore area of the
Mapping editor and accept Automatic Mapping.

3.	 The source key REGIONS_ID needs to be mapped. We select the source
REGIONS_ID row and drag it to the REGION_ID column on the Target
Datastore – SALES_REGION

4.	 The COUNTRY column needs to be mapped to a shorter length (50 to 3).
ODI automatically maps the source COUNTRY field to the target COUNTRY
column. Next to the COUNTRY target column we can see a warning icon which
provides a visual notification warning about the field length mismatch:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[231]

5.	 To solve the COUNTRY column mapping issue, we will use a CASE statement
to convert UNITED STATES to USA and INTERNATIONAL to INT. Should it not
be either one, the value will be set to ERR.

6.	 For the final mapping column, LAST_UPDATE, the sysdate operation executed
on the Oracle staging environment will meet the requirements, creating
or updating the field whenever a given REGION entry is added or changed
within the data mart. We select the LAST_UPDATE mapping column. We click
on the LAST_UPDATE target column and within the Property Inspector panel,
we set the following mapping properties and behaviors:

°° Active Mapping: Checked
°° Implementation: sysdate
°° Execute on: Staging Area
°° Insert: Checked
°° Update: Checked

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[232]

7.	 We then click on the Flow tab, and then click on the title bar for Target
(XE_on_local_as_ODITEMP) to view Target Properties. We set the property
FLOW_CONTROL to false.

When executing interfaces, if you get a message, Cannot
start execution with the first line of the Details stack trace
being com.sunopsis.tools.core.exception.
SnpsSimpleMessageException : CKM not selected,
it is likely that the FLOW_CONTROL property has the default
value set to True and no CKM has been selected. If a Check
Knowledge Module is not being needed, set FLOW_CONTROL
to false to resolve the problem.

So far, we have looked at and completed the following interface and mapping
creation topics:

•	 Created a project and two interfaces—Load Sales Person and
Load Sales Region

•	 Examined the Expression Editor feature
•	 Created a temporary index for a filter execution

Checking the execution with the Operator
Navigator
Now that we have built the Load Sales Person and Load Sales Region interfaces,
we will execute them to verify the execution in ODI Operator and examine the
executed SQL to identify where and how the mappings, filters, and temporary
index appear in the SQL generated by ODI. In this section we will:

•	 Execute the Load Sales Person interface
•	 Verify and examine the generated SQL and results, in particular, where

and how the generated SQL appears for the filters and temporary index
•	 Execute the Load Sales Regions interface and verify and identify where and

how the generated SQL for the interface mappings appear

Execute the Load Sales Person interface
We will execute the interface and monitor its execution using Operator Navigator.
To do so we follow these steps:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[233]

1.	 We open the Load Sales Person interface in Designer Navigator, and press
the green execute button in the ODI icon toolbar.

2.	 We then press the OK button on the Execution pop-up dialog, and OK on
the Information pop-up dialog.

Verify and examine the Load Sales Person results
Using ODI Operator Navigator, we will examine key details of the generated SQL
and resulting values in the SALES_PERSON table in the data warehouse.

1.	 We click on the Operator tab to switch to Operator Navigator. We open the
tree view for All Executions within the Session List accordion dialog. The first
entry is our just executed Load Sales Person results and details. The parent
green checkbox tells us that the interface executed to completion successfully:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[234]

Each number under the parent 1 – Load Sales Person
represents an executed portion of the Knowledge
Module(s) used during the interface execution. The
Loading – SrcSet0 steps come from the LKM SQL to
Oracle. The Integration – Load Sales Person steps come
from the IKM Oracle Incremental Update.

2.	 We double-click on step 3 Load Data, and then select the Code tab
to examine the SQL code generated and executed for this step. The SQL
generated as a result of the salary filter we created earlier in the Interface
with the Source radio button chosen on the Execute on: option is shown
next to the arrow:

3.	 Now we double click on step 9 – Integration – Load Sales Person – Insert
flow into I$ table and select the Code tab. Here we can see the filter that is
executed on the Oracle data warehouse as a result of setting the Execute on:
option in the filter property inspector to Target.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[235]

4.	 We click on step 4 – Loading – SrcSet0 – Create Temp. Indexes On Work,
then select the Code tab. This step is generated only if a temporary index is
specified on the Oracle target (staging) area. While used here for illustrative
purposes only, temporary indexes enable increased performance for filter
and join operations operating on large tables.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Microsoft SQL Server

[236]

The creation of temporary indexes may be a time-consuming
operation in the overall flow. It is advised to review the
execution statistics and to compare the execution time saved
with the indexes to the time spent creating them.

Verify and examine Load Sales Region results
We will now execute the Load Sales Region interface and follow its execution
within Operator Navigator:

1.	 We execute the Load Sales Region interface in a similar manner to the
earlier steps for Load Sales Person.

2.	 We select the Operator tab, and view All Executions. We then open the
tree view for Load Sales Region.

3.	 We double click on step 3 – Loading – SrcSet0 – Load Data, then select
the Code tab to view the generated SQL for this step. Here we can find
the COUNTRY column mapping we added in Designer.

We have looked at the following execution and validation topics:

•	 A refresher on how to execute an interface
•	 Examining how and where the SQL for filters is generated
•	 Examining where and how temporary indexes are created
•	 Examining how and where mappings made in ODI Designer can

be found in the SQL code provided by Operator Navigator

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[237]

Summary
We have now completed the third incremental solution to the Order Processing
example scenario. You should now be more comfortable with creating interfaces
while simultaneously being exposed to selected new features of ODI 11g.

In this chapter, we started by using Topology Navigator to create a physical Data
Server pointing to our SQL Server database server. We then created the required
Physical and Logical schemas.

In Designer Navigator, we used the newly created Logical Schema to create a
new Model and initiate a reverse-engineering process to retrieve the SQL Server
datastores we were interested in, namely, SALES_PERSON_MASTER and REGIONS.
Using those datastores we designed two interfaces to load the Sales data from
SQL Server to our Oracle data mart. While setting up the interfaces, we saw
several ways to create mappings in ODI—using the Automatic Mapping feature,
by dragging-and-dropping source columns into the target columns and using the
Expression Editor. We then had a look at the Loading and Integration Knowledge
Modules as well as their options like FLOW_CONTROL.

Finally we executed our two interfaces and used Operator Navigator to review the
steps created by ODI as well as the SQL code it generated.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data
While databases are obviously extremely significant in the realm of data integration,
a large amount of data is held in flat files.

In this chapter, we'll be taking a look at how ODI plays a significant part in
simplifying the integration of flat-file data using concepts and approaches that are
identical to those used with database-hosted data, thereby dramatically reducing
the learning curve. It also helps simplify the developer skills needed to use some of
the specialized bulk data import/export functionality that databases provide, since
that specialized functionality is encapsulated in Knowledge Modules.

Specifically what we'll cover in this chapter is:

•	 Extend the ODI Topology definition to refer to some input files and
then reverse-engineer the input file metadata from both fixed format
and delimited files

•	 Integrate data from a file using Oracle External Tables as the mechanism
for the data import

This will give us the skills to get started with using files and also expand our
knowledge of ODI capabilities in general.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[240]

ODI also has a lot of capabilities for detecting, moving,
and transferring files, but these fall outside the scope of this
"Getting Started..." book. There are a number of examples
covering this specific area at http://blogs.oracle.com/
dataintegration/. A lot of the content is also available in
the archives of this blog, which can be accessed directly from
that same link.

One type of file that we won't specifically be covering in this chapter is the XML file.
We'll be covering it in the next chapter.

Working with flat files
In this example we'll be adding partner information into our data mart from flat files.

Scope
Briefly put, this example will perform the initial data loads of the Partner data. ODI
also has built-in capabilities for using FTP and SFTP as well as sophisticated file and
folder management functionality—files can be gathered securely from remote hosts,
marshaled and processed by ODI, then archived locally or once more transferred
to a remote storage location. ODI can even wait for "trigger files" to be detected at
any stage before proceeding with the next phase of data integration processing.
However, to keep things simple and to comply with our "Getting Started…" flavor,
we're only going to be dealing with locally hosted files in a fixed folder location.

Prerequisites for flat files
There are no additional system elements that need to be installed to enable ODI to
work with file data; it comes with its own JDBC driver for flat files.

ODI can also leverage database utilities for flat file processing. One important point
to keep in mind is that both files and utilities have to be accessible to the ODI Agent
that will process the files (either they are on the same server, or the files and utilities
are on a shared directory that is visible to the agent).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[241]

Integrate the file data into an Oracle table
Integrating the file data into an Oracle table will be done by using an external table,
adding files schema entries to the ODI Topology.

ODI Topology comes out of the box with a generic data server entry for the Files
technology. However, we will still need to add an ODI Physical Schema entry
to refer to the operating system folder in which our input files are held. For our
example this will be C:\po\input.

As we know well by now, we must also associate this Physical Schema to a Logical
Schema name via the context name that we're using.

Partner data target, source, and mappings
The target PARTNER table in the PO Processing DATAMART schema has the
following structure:

This will be populated from a fixed format file called partners.txt which is in the
C:\po\input folder. It has five columns with the following structure:

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[242]

There are no header rows containing column names in this file, but the data is held in
the file in the same column order as the target table.

The format for the date is significant. ODI needs to be told how
to interpret a date column in a file as a date value, rather than as
a character string. ODI being written in Java uses the Java date
formatting rules. In this example dd represents the day of the month
with a leading 0 for days numbering less than 10; MMM represents a
3-character abbreviation of the month name; and yyyy represents
the 4-number year value. The punctuation characters are read
literally, but do not influence the date value; the - used here could
be replaced with / if this is what is used in the file.

Once the file is properly defined, including formats where needed, we can use it in
our mappings

A full list of Java date formatting rules and examples can
easily found via your favorite internet search engine using
Java SimpleDateFormat as keywords.

The mapping of the file data to the target table is straightforward: the first source
column maps to the first target column (PARTNER_ID), with each subsequent source
column mapping to the next sequential target column in order. As before, the target
LAST_UPDATE column will be filled with the date that the record was last changed.

During the reverse-engineering process, we will be able to overwrite the name of the
file columns, so that we can leverage ODI's automatic mapping facility.

Partner interface flow logistics
Our source is a flat file, our target is the Oracle data mart and our staging area will
also be in the Oracle server hosting the data mart (remember that a staging area must
be in a relational database).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[243]

For our Loading Knowledge Module we're going to use LKM File to Oracle
(EXTERNAL TABLE). Even if you've never used Oracle External Tables before, don't
worry; we will have used one by the time we are finished with this example, and
you'll see how easy ODI makes it!

For integrating the data from the staging area into the target table, we're going to
use the same IKM as before (IKM Oracle Incremental Update).

File System:

Local folders

PARTNER

table

partners.txt

file

LKM

Oracle:

Data Warehouse

Server

IKMSS_0

IKM Oracle Incremental Update

LKM File to Oracle

(EXTERNAL TABLE)

DATAMART
schema

ODITEMP
schema

C:\po\input
folder

Once we've executed the interface we'll look at the results of our data load.

Step-by-step example
We now know what we'll be doing, so let's get started!

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[244]

Expanding the topology for file handling
As we saw in the overview of the task, the first step is to expand the topology to add
a reference to the file folder that holds the input files.

1.	 We first click on the Topology tab to switch to the Topology Navigator.
2.	 As we expand the Files technology node, we see the default FILE_GENERIC

data server under the file technology.

3.	 If we double-click (or right-click and select Edit) on the FILE_GENERIC
data server node, the window that opens shows that the username and
password fields are blank.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[245]

File access permissions
ODI will use the file access permissions of the operating
system's user while executing the runtime code to process
the files. So when using ODI Studio (as we are for this
example), it will be the user who started Studio; when using
a Standalone Agent, it will be the user that started the agent
process; when using a Java EE agent running in WebLogic
Server, it will be the user associated with the WebLogic
Server instance's process.

4.	 When we click on the JDBC tab, we see that a JDBC driver is used to access
file data (so SQL will still be used to access and manipulate the data), but the
JDBC URL doesn't include any references to network information, such as
a hostname or address. That's because the ODI file JDBC driver only allows
access to files that are "visible" from the local machines; they can be on local
drives, mapped network drives, NFS mounted disks, and so on.

There are some optional properties that can be added to the file driver's
JDBC Url field—these are documented in the ODI 11g documentation in
the Connectivity and Knowledge Modules Guide for Oracle Data Integrator.
We'll just be using the default settings here.

Since the FILE_GENERIC data server definition can be used
to access any locally visible flat file, there is normally no
requirement to add another data server definition to access file
data. However, if you need to access files that use a specific
character set (the default is ISO8859_1), then you should add a
new file data server definition with the appropriate character
set encoding option and value set in the JDBC Url field and
use a data server name that reflects these changes from the
settings of the generic file data server.

5.	 We only looked at the FILE_GENERIC definition to understand how it is
defined, but we do not need to change anything, so we close it.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[246]

6.	 Under the server definition, we create a new Physical Schema (right-click
on the FILE_GENERIC node). In the new window, we can click on what
looks like a drop-down list next to the Directory (Schema) and we replace
the <Undefined> text with C:/po/input (you can actually type the name
directly in that field). We do the same for the Directory (Work Schema) field.

Note that ODI uses the Java convention for file system paths.
You can use the forward slash character / as the folder separator
for all operating systems—Windows and Unix alike.

7.	 We then click on the Context tab and add a mapping in the Global context
to a new Logical Schema named FILE_PO_INPUT (and hit Enter).

That's it in terms of expanding the topology. If we wanted to access more folders
than just c:\po\input, then we'd add a new Physical Schema (and associated
Logical Schema name) for each folder. We can now move to integrating the Partner
data into the data mart.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[247]

Integrating the Partner data
In this section we have a number of subtasks:

1.	 First we need to create an ODI model for our input file and then we need
to create a datastore entry for the Partners file. This isn't quite the same as
reverse-engineering from a database table, as you'll see.

2.	 Then we'll create a new project for this example and import the Knowledge
Modules for the interface to integrate the Partner data. Then we'll actually
build the interface to integrate the data from the Partners input file.

3.	 Then we'll execute the interface and check on the integrated data, creating
the Model and PartnersFile datastore definition.

Let's get started with these tasks:

1.	 We click on the Designer navigator tab and expand the Models accordion
panel. We use the menu icon in the Models panel title bar to create a New
Model and call the model File PO Input Folder. We select File as the
Technology and the FILE_PO_INPUT entry is automatically selected for us
in the Logical Schema field since we only have a single file Logical Schema
so far.

Previously we had used the Model editor (the window currently open) to
perform reverse-engineering. However, as we touched on earlier, this is
not possible when dealing with flat files as we first need to describe the file
structure. So we just save our work and close the editor window.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[248]

2.	 In the Models accordion panel, we right-click on the File PO Input Folder
node and select New Datastore.

3.	 In the Datastore editor, we click on the search icon (the magnifying glass)
to the right of the Resource Name field so that we can browse for the
C:\po\input folder\partners.txt file and then click on the Open button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[249]

4.	 Back in the Datastore editor we set the Name to PartnersFile. The Alias
field automatically picks up the first three characters of this name. However,
since this is the name that will be used in the SQL for the interface mappings,
we can make this alias a bit more explicit and unique, so we change the Alias
field to PARTNERSFILE. We can ignore the OLAP Type, as it is not relevant
for flat files.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[250]

5.	 If you were to open the partners.txt file in something such as a Notepad,
you'd see that the file has a fixed length column format, with the values being
padded with spaces, and doesn't have any column heading information.

When dealing with flat files, always make sure that the owner
of the file gives you a precise description of the structure of the
file. There is nothing worse than assuming that the file has a
fixed structure when, in fact, it has a separator. If we were to
only look at the partners.txt file, there is no way to know
for sure whether it is a fixed format or a tab delimited file!

6.	 Back in the Datastore editor in ODI Studio, we click on the Files tab. We set
the File Format to Fixed, we make sure that the Heading (Number of Lines)
value is 0, we leave the Record Separator as MS-DOS, and as we have a
fixed format we do not need a Field Separator. We save our work at this
point, but we do not close the editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[251]

There are a few options that we have ignored here:
Field Separator: This entry can be ignored. But for a
delimited file, this is where we would specify the separator
characters. You can use one or several characters.
Text Delimiters: Some files will enclose text fields with
double quotes for instance, to make sure that characters in
text strings are not confused with separators. Use this field
if your files are using text delimiters.
Decimal Separator : Some countries use a comma, whereas
some use a point or period. When dealing with files from
different countries, you can ensure that decimal separators
are properly handled for each file.

We then click on the Columns tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[252]

7.	 The left-most icon in the title bar above the column area starts the
reverse-engineering wizard. Be careful to not click on the words Reverse
Engineer, as they refer to reverse-engineering a COBOL copybook file,
which we're not doing here. The icon that we click on has been surrounded
by a red box in the following screenshot:

8.	 The Column Setup Wizard appears as follows:

By default, all the data will be collected into a single column called C1 and
you'll see that the actual file data is being used in this wizard. However, if
you move your mouse over (or just below) the column ruler at the top of
the wizard dialog you'll see a vertical black line stretching down through
the data (like in the previous screenshot). If you move your mouse along
the rule to the start of each column of data below and then click, the black
line changes into a little red spot on the column ruler and you'll see that
additional column names are added (C2, then C3, and so on). This is the
way that you specify the column boundaries in the file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[253]

If you make a mistake, simply click again when the black line covers the
offending red spot and it'll be removed. This file has five columns of data,
so you should end up with columns C1 to C5 being defined, with no leading
spaces for any of the columns (apart from the second column of the last row
of course!). We can either enter the column names and types here, or close
the wizard and finish the work in the File editor. Here we click on OK to
close the Column Setup Wizard.

9.	 Back in the Datastore editor we now see the output from the wizard in a
tabular form:

To make the most of auto-mapping later, we're going to name our columns
exactly the same as those in the PARTNER target table in the data mart.

10.	 We are setting names and attributes for these columns per the following
table, leaving the Start, Physical Length and Logical Length values as
they are:

Name Type Format
PARTNER_ID Numeric
COMPANY_NAME String
CITY String
COUNTRY_ID Numeric
DATE_ENLISTED Date dd-MMM-yyyy

As we saw in the introductory section, the date format string given here
is the correct type required for Java (ODI 11g) to read and interpret the file
text as a date value. As with most things in Java, case is important in the
date format string.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[254]

11.	 Once we have the correct column names and types set along with the date
format, we can save our work and close the File editor. Now if we expand
the PartnersFile node in the Models pane in the Designer Navigator, the
PartnersFile datastore node will be shown. If we right-click on this node
and select View Data… we see a data browser window open with the file
data displayed. Any misalignment or missing data would indicate an issue
with the definition of the structure of our file.

12.	 Before we close any editor windows we're going to perform one more check.
Open up a Windows Explorer window and navigate to the C:\po\input
folder. If you see any files called partners.bad or partners.error, then
something has been entered incorrectly. Open these files in a text editor to
see what the errors are and the affected rows. Correct the errors in the
datastore definition for PartnersFile, delete the partners.bad and
partners.error files and open another View Data… window for the
datastore again. Hopefully this time there won't be any .bad or .error
files created, but if there are, you now know what to do!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[255]

13.	 Once you can successfully see all the data in the data view window and
no error files are created when you do so, save all your work, close the
PartnersFile data view and datastore editor windows in ODI Studio.

We have now successfully modeled the metadata for the Partners datafile in ODI.

Note that a lot of what we did here comes from the lack of
information in the file. In a delimited file, you only have
to specify the separator, you do not have to manually
define where columns start and stop. Similarly, if the file
has a header row that describes the column names, then
we would not have to manually enter the column names
and that would be true for both fixed and delimited files.

Creating and preparing the project
First we're going to create the project and import the Knowledge Modules we're
going to use for the first interface.

1.	 With the Projects accordion panel in the Designer Navigator expanded,
we create a new project that we call Chapter 8.

2.	 We expand the Chapter 8 project node, right-click on the Knowledge
Modules node and select Import Knowledge Modules.

3.	 Using the Import Knowledge Modules dialog, we import IKM Oracle
Incremental Update and LKM File to Oracle (EXTERNAL TABLE)
into the project.

As with any database operation, you need to make sure
that ODI has enough privileges to perform the required
operations. With the External Tables LKM, ODI can
create the necessary directory in the database to define
the external tables, or reuse an existing one. The choice
of letting ODI creating the directory (and having the
necessary privileges) is usually in the hands of the DBAs.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[256]

Creating the interface to integrate the Partner data
To create an interface, follow the given steps:

1.	 We can now expand the First Folder node in the Chapter 8 project and
right-click on the Interfaces node to create a New Interface.

2.	 We call the interface Load PARTNER and we click on the Mapping tab.
3.	 In the Models panel we select the PARTNER datastore from the Oracle

DataMart model and drag-and-drop it into the Target Datastore area
(top right) of the Mapping editor.

4.	 From the File PO Input Folder model, we drag-and-drop the PartnersFile
datastore into the sources area of the Mapping Editor, clicking on Yes in the
auto-mapping dialog.

The work we put in making sure that the file datastore column names
matched those for the target in the data mart has just paid off. All the source
columns are correctly mapped, leaving us with only the LAST_UPDATE
column to map. We click on the column name, and in the property panel set
the execution location to the Target and Type to SYSDATE for the mapping.

5.	 Now we can click on the flow tab and view the integration flow generated
by ODI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[257]

This shows that LKM file to Oracle (EXTERNAL TABLE) has been selected
by default to load the file data into the staging area.

If you scroll down the list of options for this particular KM,
you'll see that the EXT_PARALLEL option has been set by
default to have the Oracle database use parallelization, which
will result in faster loads—especially of large data files. This
kind of optimization that takes advantage of platform-specific
capabilities would not be available in a generic Knowledge
Module, a compelling reason to use a platform-specific KM.

The IKM we imported will have been selected to perform the integration.
We are setting the FLOW_CONTROL option to false as we will not control
the data.

We're now ready to run the interface and use an Oracle External table.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[258]

Running the interface
To run the interface and check the result, we do the same as we have done in the
previous chapters:

1.	 We click on the run button in the main ODI toolbar (the green triangle),
we accept the defaults in the Execution dialog, and we dismiss the Session
Started dialog when it appears.

2.	 We click on the Operator Navigator tab to view the execution status. Click on
the refresh button if necessary to see the latest execution highlighted by a red
box as shown in the following screenshot:

We can examine the code generated and executed to use the External Table.

3.	 In the Operator Navigator All Executions list, we expand the Load
PARTNER session node and the Load PARTNER step node below that
to show all the Loading, Integration, and Control commands that were
executed by the interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[259]

Here we can see that the LKM creates the Oracle directory, grants access to
that directory, creates the external table reference, and then creates a view
on that external table. It doesn't actually move any data—it just makes it
available directly from the file as an Oracle table.
You can always open up any of these execution steps and take a look at the
code needed to use an Oracle external table. But if you just want to bask in
the glory of having used an Oracle External Table without having to know
the specifics of commands and syntax, that would be OK too.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating File Data

[260]

4.	 We click on the Designer Navigator tab and locate the PARTNER datastore in
the Oracle DataMart model. We right-click on this node and select View Data.
A data view window opens displaying the newly integrated contents of the
PARTNER table in the data mart and shows the 12 rows that were loaded.

That's it for our file example. We have:

•	 Successfully added a Physical Schema to allow access to file data
•	 Defined a Model for the flat file
•	 Loaded data using an Oracle External Table and seen how effectively ODI

Knowledge Modules can encapsulate the expertise to use proprietary
database extensions and utilities

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[261]

Summary
Here's what we've covered in this chapter:

•	 We've learned about the FILE_GENERIC data server and what we'd need to
look out for when using different character sets in files

•	 We've seen how to reverse-engineer metadata from both fixed format and
delimited files and how the two methods differ

•	 We've used an Oracle External Table without having to learn the detailed
database syntax to achieve this, because the Knowledge Module we used
encapsulated all that expertise and made it easily reusable

•	 We also saw that there are still circumstances (such as setting the necessary
database permissions) when some additional preparatory work is needed
before we can use platform-specific Knowledge Modules

We've integrated data from a flat file into a database. Next we're going to deal with
a form of file that has massively growing significance in the business IT world,
namely XML files.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files
Extensible Markup Language (XML) has grown rapidly in importance over the
last few years. It has a strong association with web services and service-oriented
architecture (SOA) initiatives, but it is working its way into all kinds of areas in IT.
As a result, XML is often a significant factor in enterprise data integration projects.

ODI 11g is in a very strong position when it comes to XML as it has an extremely
powerful and rather elegant JDBC driver that works directly with XML structures,
as we shall discover in this chapter. What we will cover is:

•	 A very brief introduction to XML, just to cover the basics, and to
make sure that we use a common vocabulary when exploring XML
and ODI's capabilities

•	 An overview of the ODI JDBC driver for XML and the essentials of how
it works: this is important to understand certain aspects of how to use
ODI with XML and will include explanations of the most commonly used
JDBC driver flags

•	 A brief look at some of the more advanced capabilities of the XML driver
•	 A sample tutorial in which we'll be reading a simple XML file and integrating

its data into our data mart

Introduction to XML
XML files employ a format in which data is contained in a nested, hierarchical
structure of tags which give context and meaning to the data contained between and
within the tags. It has been described as similar to HTML because both in XML and
in HTML the tags used can each have attributes, can surround data value elements
(in HTML these are mostly text strings to be displayed), and can support deeper
nesting of tag structures.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[264]

Where tags surround data or a deeper structure, they have opening tags balanced
with closing tags, those nested inner tags always being closed before outer tags as in
this snippet of HTML:

This text will be displayed as bold <i>and this as bold italics
 </i>.

Where a tag has attributes, but doesn't surround any data or other elements, the
opening and closing tags can be combined into one, with a closing "slash-bracket":

<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />

However, a big distinction is that HTML was designed to display data, whereas XML
was designed to carry data—albeit that XML was always intended to be suitable for
the web.

The limited range of tags and the known structural rules in HTML mean that quite a
lot can be inferred in a sequence of HTML. So you frequently see "unbalanced" tags
in HTML pages. This is never true of XML: it isn't designed for a limited set of clients
or interrogators, so it doesn't have a pre-defined set of tags or structures (after all,
it's extensible!), so each tag must explicitly be closed in XML, as the opening of any
particular tag type cannot imply the closing of any previous tags.

Since XML is so extensible, the definitions of the tags being used in a document or
file together with the structural and datatype metadata for those tags are held in a
separate, but associated definition document or file, typically either as a:

•	 A Document Type Definition (DTD), which is an early, rather terse method
of defining tags, their attributes, and their hierarchies, or

•	 An XML Schema Definition (XSD), which is itself an XML-based method of
defining an XML structure including:

°° Tag names, attributes, and value types (using standard datatypes
such as string, integer, and decimal.

°° Complex types, which are user defined substructures of tags
and attributes.

°° Namespaces, which are conceptual "containers" in which complex
type definitions can be organized to help clarity and avoid naming
conflicts. Once a user-defined complex type has been defined to
reside in a specific namespace, an XML document need only refer
to the namespace in order to use and leverage that complex type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[265]

In fact, since an XSD is an XML document, it needs to conform to a schema definition
itself. Fortunately there are standard organizations that have agreed to a common
format and content for these foundation definitions of elementary types, tag names
to use to define new types, how to specify namespaces, and so on.

If you are a total newcomer to XML, there are many websites (your favorite search
engine will oblige) and books that cover the subject, but the authoritative source of
information is the World Wide Web Consortium (W3C) and they have a section of
their website dedicated to XML at http://www.w3.org/standards/xml/—their
XML Essentials section is a very good introduction to the basic concepts of XML.

XSD and DTD files are the most prevalent vendor-neutral forms of schema definition
for XML, and even though XSD has to a large extent eclipsed DTD by being more
easily understood, more flexible, and more powerful, both are still in use—and both
can be used with ODI 11g.

Introducing the ODI JDBC driver for XML
As we've mentioned before, ODI uses JDBC in order to access data, so it needs
a JDBC driver to access XML data. Fortunately it comes with an extremely
sophisticated driver right out of the box. It will be essential for us to understand
some of the characteristics and working methods of the driver for us to use it
correctly and effectively, so we'll cover the basics here.

ODI and its XML driver—basic concepts
We now know that XML documents contain a hierarchical, nested structure of
elements (each of which may have attributes), all of which are contained within
a single root element.

We also know that ODI is a very SQL and relational-oriented tool that models
things in a very table-like way.

The ODI JDBC driver for XML marries these two paradigms by representing
a single XML file as a hierarchy of table-like datastores that are related to each
other through primary, foreign key relationships:

•	 Each XML element (tag) that contains subelements (nested tags)
becomes a table

•	 Each attribute becomes a column of the associated element's table

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[266]

•	 Lowest level elements that only contain data values and no nested tags also
become columns of the containing element's table

•	 To preserve the order of elements in the correct sequence within an enclosing
tag pair, an ORDER column will be added for each enclosed element—whether
that element is mapped to a table or a column within a table

•	 To maintain the correct hierarchical nesting of elements, the driver will also
add numeric primary and foreign key columns to the tables

As an example, let's take a look at a simple XML file that has a root element that only
contains one level of subelement:

<?xml version="1.0" encoding="UTF-8"?>
<Building>
 <StreetAddr>32 Lincoln Road</StreetAddr>
 <Locality>Olton</Locality>
 <City>Birmingham</City>
 <StateOrProv>West Midlands</StateOrProv>
 <PostCode>B27 6PA</PostCode>
 <CountryCode>44</CountryCode>
</Building>

If reverse-engineered into ODI, this would resolve to a table called Building that
has columns called StreetAddr, Locality, City, and so on. There would also be
columns created in the table in the model called StreetAddrORDER, LocalityORDER,
CityORDER, and so on that would hold numbers that represent the order in which
those elements appear in the XML file.

The use of the term "table" here is significant: what the XML driver does is it creates
these tables and columns in a relational schema and uses that schema for the
management and manipulation of the data in the XML file. By default this relational
schema is created in memory, but the driver can be configured to use an Oracle or
non-Oracle database, which enables ODI to work with huge (tens or hundreds of
megabytes and even more) XML files.

Although ODI 11g does allow the use of an external database
such as Oracle to be used as a data manipulation area purely
for the XML JDBC driver (as distinct from a staging area used
in an ODI interface), this chapter will only cover the default
out of the box behavior which has this "in-driver" XML data
manipulation occurring in memory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[267]

If the XML file holds a nested structure of elements, such as a building that has floors
and rooms on each floor, the XML driver will create a hierarchy of related tables in
its relational schema, as shown in the following figure:

In-Memory, or

External RDBMS

building

floor

room

ODI XML Driver

<?xml version=“1.0”>

<building>

<floor level=“1”>

<room layout=“theater”>

<id>Seminar 1</id>

<ext>4522</ext>

</room>

<room layout=“board”>

<id>Conf 1</id>

<ext>4523</ext>

</room>

</floor>

<floor level=“2”>

...

Driver Schema

<?xml version=“1.0”>

<xs:schema

xmlns:xs=http://www.w3.org/2001/XMLSchema>

<xs:element name=“building”>

<xs:complexType>

<xs:sequence>

<xs:element name=“floor”>

<xs:complexType>

<xs:sequence>

<xs:element name=“id” type=“xs:string”/>

ext integer

</xs:sequence>

</xs:attribute name=“layout” type=“xs:string”/>

</xs:complexType>

</xs:element>

...

<xs:element name=“ ” type=“xs: ”/>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[268]

Each XML data file is represented in the ODI topology by its own Physical Data
Server. Within that Data Server a single Physical Schema will represent the
hierarchical schema and the contents of the XML file. This differs from comparable
objects for database technologies (where each Data Server will have access to all
of the individual schemas available via a single database server connection string)
or for flat files (where a single Physical Data Server covers the whole accessible
filesystem structure for the hosting machine and each Physical Schema represents
a filesystem folder).

There is an in-depth description of the ODI XML JDBC driver
in the ODI 11g documentation, specifically in Appendix B of
the Connectivity and Knowledge Modules Guide, available (at
the time of writing) at the Oracle Technology Network at
http://www.oracle.com/technetwork/middleware/
data-integrator/documentation/index.html.

Example: Working with XML files
In this example we're going to be reading simple XML files with ODI. Along the way
we're also going to introduce ODI Procedures and build a couple of examples.

Requirements and background
The examples in this chapter build on the expertise gained in previous chapters.

Our overall sample scenario covers a Purchase Order (PO) processing environment
and here we're going to be dealing with handling Purchase Order data. So what we'll
focus on in this section is how ODI can integrate incoming Purchase Order data into
the data mart from which those other PO processing elements could retrieve the
purchase orders for further sequential processing.

The PO data we must handle is provided in the following format:

•	 We have an online order capture system that outputs each order as an XML
message as they are placed. These messages are stored as individual XML
files. The files that we receive from the online system are always for orders
placed today.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[269]

Scope
As we've noted earlier, we're going to be reading XML files and examining the
behavioral characteristics of the XML driver when used in its default configuration.
We will not be using an external SQL database for the XML driver to store the schema
and data, nor will we be using special character sets in the XML.

As we progress through this example we will also need to run a number of procedures
and interfaces that we create in a piecemeal, manually-driven way. How this can be
orchestrated and performed by ODI itself will be covered in the next chapter.

Overview of the task
We're going to break down the task of integrating a single Purchase Order from
our sample file into smaller parts. This will include:

•	 Setting up the topology entries for the file
•	 Reverse-engineering the metadata from the XML schema
•	 Building an interface to map and enrich the data into the target table
•	 Executing the interface and checking the results of our execution

We'll also take a first look at ODI Procedures and use two interactively in relation
to our XML file integration.

Integrating a Purchase Order from an XML file
By now it will come as no surprise that we will be creating topology entries for a
Data Server, a Physical Schema and a Logical Schema. What we will see is both the
similarity to and difference from the way that we specified corresponding entries
for flat files.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[270]

Creating models from XML files
Once again we'll be reverse-engineering metadata on a file-by-file basis, but we'll
also see that using the ODI XML driver adds significance to the concept of schemas
in the topology when it comes to the reading, writing, and manipulating of XML
data and the relationships.

We'll also see after the reverse-engineering process that the new columns that are
added in the model allow ODI to preserve element order and hierarchical association
information between nested structures of elements.

Integrating the data from a single Purchase Order
We'll be integrating data into the PURCHASE_ORDER table in the data mart. This table
has the following format:

The table will be populated from an XML file called order_20001.xml which
is in the C:\po\input folder. It has a single record of data that conforms to
the following XML schema definition shown in the following figure. This XML
schema is composed of those main elements:

•	 The root element is called PurchaseOrder and is of type
PurchaseOrderType (the po: prefix refers to the http://xmlns.
oracle.com/ns/order namespace)

•	 PurchaseOrderType has a sequence (the oval with three red dots) of
nine subelements, some of which are optional (the dotted outline boxes)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[271]

type po:PurchaseOrderType
PurchaseOrder

<schema>

targetNamespace http://xmlns.oracle.com/ns/order

PurchaseOrder Type

CustID

type string

ID

type string

productName

type string

itemType

type string

price

type decimal

quantity

type decimal

status

type string

ccType

type string

ccNumber

type string

The mappings are all straight-through (no data modification) from the source XML
file apart from four columns in the target:

•	 ORDER_DATE is taken to be the date on which the order data is integrated
(these XML files are processed on the day the order is received)

•	 FULFILLMENT_DATE will be left blank (null) for now as we don't have that
information yet

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[272]

•	 The PRODUCT_ID will be obtained by a lookup into the data mart's PRODUCT
table based on the product name held in the XML file

•	 The STATUS of the order can be changed to Approved if either the value is
less than $1000 or if there is a valid credit card number for orders of $1000
or above

•	 Orders of $1000 or above with an invalid credit card will need their status
set to InvalidCreditCard

We also have a requirement that each order must be associated with either a sales
person or a partner so that we can calculate commission correctly. Rather than
performing a join with the CUSTOMER table in the data mart, we have created two ODI
constraints on the data mart's PURCHASE_ORDER table so that non-compliant purchase
orders are diverted into an error table from where they can later be corrected
and fed back into the next interface execution. The first constraint checks that the
CUSTOMER_ID in the Purchase Order links to a valid customer and the second checks
that the linked customer either has a SALES_PERSON_ID or PARTNER_ID entry. The
advantage of this is that the constraints will be reused by all interfaces that feed into
the PURCHASE_ORDER table—we don't need to check that all the interfaces include the
correct join.

We'll be using CKM Oracle to divert these non-compliant records by using flow
control in the interface.

Single order interface flow logistics
Our main source is an XML file and our target is our Oracle data mart. We're also
going to perform a join into the PRODUCT table which is in the data mart, so it makes
sense to have the staging area in the data mart server and the join can be performed
there without having to move the PRODUCT table data out of its hosting server. This
is one benefit of ODI's Extract, Load, and Transform (ELT) architecture.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[273]

XML:

Single PO File

PURCHASE_ORDER

table

PurchaseOrder
LKM

Oracle:

Data Warehouse

Server

IKMSS_0

IKM Oracle Incremental Update

LKM SQL to SQL

DATAMART
schema

ODITEMP
schema

XMLPO
schema

ES_PURCHASE_ORDER

table

PRODUCT

tableCKM

CKM Oracle

We decided to use LKM SQL to SQL to show that you don't have to use a
platform-optimized Knowledge Module if you don't want to. The LKM SQL
to Oracle can also be used for this example scenario.

After we've run the interface to integrate the data we're going to investigate
some of the nuances of dealing with individual XML files and employ some
techniques that are commonly used when dealing with files of this type.

The schema name XMLPO shown for the source in the previous
figure for the XML file region is simply a value that we'll pass as a
parameter to the driver so that it can name the region of memory
it sets up to hold the relational representations of the underlying
XML file data. Being able to name schema regions in this way
means that the driver can segment and keep separate the work it
performs for multiple different interfaces if that is needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[274]

Sample scenario: Integrating a simple
Purchase Order file
In this section we will:

•	 Create the necessary topology entries to be able to interrogate the XML file
and its schema to access both the data and metadata

•	 Reverse-engineer the XML file into an ODI model and take a quick look at
the structure that gets created

•	 Use the ODI model to build an interface to read the data from the XML file
and move it into the target table

•	 Improve the approach we've taken so that it can better cope with multiple
similar XML files—bearing in mind that we'll get one incoming file per
Purchase Order captured by the online system

•	 Highlight one of the key things to remember when dealing with the ODI
XML driver…

So with that last thought hanging, let's get started!

Expanding the Topology
As you'd expect, the first thing to do is to expand the Topology definitions to include
the XML file we want to integrate.

1.	 With ODI Studio open and connected to a Work repository, we click on the
Topology navigator tab.

2.	 We scroll down the list of technologies right to the bottom, then right-click on
XML to add a new XML data server and we call it XML Single PO File. We
can leave the fields labeled (Data Server), User, and Password all blank and
go straight to the JDBC tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[275]

3.	 We click on the browse icon (magnifying glass) to the right of the JDBC
Driver field and when the driver selection dialog appears we click on OK
to accept the default choice of the ODI JDBC Driver for XML.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[276]

4.	 Next we click on the browse icon to the right of the JDBC Url field to open
the URL examples dialog.

The URL parameters description mentions the f= parameter for the filename
and the s= parameter for the name of the relational schema that the ODI XML
driver will create in memory and it also hints that there are a number of other
parameters that could also be specified. This is very true, but we're going to
use only one of those additional parameters, that being the d= parameter,
which specifies the location of the DTD or XSD document that specifies the
definition of the XML schema being used by the data file.
We click on OK to accept the default example URL template.

5.	 We modify the JDBC Url field to reflect the location of the XML and
XSD files. We also choose to call the schema XMLPO (s= parameter):
jdbc:snps:xml?f=C:/po/input/order_20001.xml&d=c:/po/
xmlschemas/po.xsd&s=XMLPO.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[277]

This means that we'll be accessing C:\po\input\order_20001.xml file
(remember the Java preference for forward slashes for folder separators),
using a definition of an XML schema held in C:\po\xmlschemas\po.xsd
and the driver will create an in-memory area at the ODI Agent level that it
will refer to as the XMLPO schema and create our relational representations
of the XML data in there.

Obtaining log information from the ODI XML JDBC driver
If the Test Connection operation were to fail by raising an
error, we can add another couple of JDBC URL parameters
to switch on driver logging and specify a log file to which it
will write. For example, adding the text, &ll=255&lf=c:/
po/input/xml.log, to the end of the URL we've been
using will set the log level to 255 (the most detailed level)
and will write all entries to the C:\po\input\xml.log
log file. This should help with diagnosing and resolving any
problems we might have, or at the last resort will help any
conversations with Oracle Technical Support about issues
regarding our XML files.
Remember to switch off (remove) these options once you've
resolved your problems, or you will both slow down the
driver's operation by forcing it to write loads of logging data
as well as gradually filling up your disk space!

6.	 We click on Save All and dismiss the informational dialog about creating
a Physical Schema—we'll do that soon. For now we click on the Test
Connection button in the Data Server editor's toolbar. After a slight pause
we see a Successful Connection informational dialog appear.

It's useful here to reflect on what happened in that slight
pause. The XML driver opened up the XSD file we referenced
in the connection URL and used the structure defined within
it to create a table (just one in this case) in an in-memory area
that it created and called XMLPO; it then loaded the data
from the XML file into that table. From here on the XML
driver will be using the in-memory data until and unless
we instruct it to do otherwise. This means that the Test
Connection check is extremely thorough—it checks that the
XSD (or DTD) schema is valid and also checks that the data
held in the XML file conforms to that schema.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[278]

7.	 Now that we have a successful connection we close the Data Server
editor tab.

8.	 We expand the XML technology node and right-click on the new data
server to create a New Physical Schema.

9.	 In the Physical Schema editor that appears we use the drop-down lists
to select the newly created in-memory schema XMLPO for both the
Schema (Schema) and Schema (Work Schema) values.

10.	 Finally we click on the Context tab and add a new Logical Schema reference
for the Global context, typing in the name XML PO (and hit the Enter key). We
click on Save All and close the Schema Editor tab.

Reverse-engineering the metadata
Next we'll reverse-engineer the XML file to create a new model for the data that
we're going to integrate. The process to create a model is as follows:

1.	 We switch to the Designer navigator tab and add a New Model, calling it
XML Single PO and we select the XML technology: the XML PO Logical Schema
will automatically be selected for us as it's the only compatible one defined
so far. We click on the Selective Reverse-Engineering tab and then click on
the checkboxes to select Selective Reverse-Engineering (the New Datastores
box should automatically get checked) and to view the Objects to Reverse
Engineer. A table called PURCHASEORDER can be reversed, so we select it, click
on the Reverse Engineer button in the Model editor's toolbar and close the
Model editor tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[279]

2.	 In the Models accordion pane, we expand the XML Single PO model,
double-click on the PURCHASEORDER datastore node to open up the
Datastore editor, and then click on the Columns tab.

We can see that all the columns appear in alphabetical order, with each
of the data columns having a corresponding numbered ORDER column
which will indicate the actual order in which the elements appear in the
XML file. There's also a PURCHASEORDERPK column been added to
ensure that ODI can distinguish between XML records that may have
identical information (there is nothing to stop this in XML data)—this
column being marked as Not Null. Three additional columns have been
added, all with a prefix of SNPS (a hangover from "Sunopsis" days):
these columns hold information about the filename, path, and time
when the file was accessed to retrieve this data (which was when we
tested the connection).
We can also see that all the XML "string" type columns are reverse-engineered
as VARCHAR(255) in our model and all the "decimal" type columns are
translated to NUMERIC(10,2). We can anticipate that when mapping from
some of these source columns to corresponding columns in our target that
have types such as VARCHAR2(30) or NUMBER with no decimal places that
we're likely to receive warnings.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[280]

We could change these column definitions here and save our changes to
avoid those warnings, but for now we just close the Model editor without
altering any details.

There is a case sensitivity parameter that we could have
set in the connection URL for the driver. Since we didn't
set this parameter, we're seeing the default behavior of
all datastore and column names being in uppercase.

Creating the Interface
We're done with the metadata, so we need to start to create an interface to move
the data.

1.	 We create a New Project, called Chapter 9, save it, and close the Project editor.
2.	 Within First Folder in the Chapter 9 project, we create a New Interface, call

it Load Single PURCHASE_ORDER, and move to the Mapping tab.
3.	 We drag-and-drop the PURCHASE_ORDER datastore from the Oracle

DataMart model as the target and the PURCHASEORDER datastore from the
XML Single PO model as the source, accepting automatic mapping.

4.	 We notice that a couple of yellow warning triangles have appeared next to
two out of the three mappings that ODI automatically created. We click on
the matching warning symbol above the sources area to see what these mean.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[281]

5.	 The top two messages in the dialog that appears (if we scroll across) inform
us that the warnings for the two fields that we have mapped relate to the
possibility of data being truncated. In the case of the STATUS column, it's
because the default field length given from reverse-engineering an XML
"string" type is 255 characters as we saw earlier, whereas our target column
is considerably smaller. As we map the other "string" columns we'll see
more warnings of this type. The QUANTITY column is specified as a "decimal"
XML type and this is translated to be a number with up to two decimal
places when reverse-engineered into ODI. The column we're mapping
into is specified to have no decimal parts, so it's these that would be at risk
of truncation in the interface. We'll simply ignore these warnings for this
interface as none of our data will in fact be truncated.

The next two messages—those with a Critical status—relate to Knowledge
Modules not being selected for the interface and this is because we haven't
imported any into this project yet. We'll address this soon.
The final three warning messages tell us that we're missing some mandatory
mappings, which we will address next, so we can close the Interface
validation report dialog.

6.	 Before we get carried away and start creating mappings too quickly, we need
to take note of a couple of things:

°° The source CUST_ID and target CUSTOMER_ID columns are of different
types, the former being a character string and the latter a number

°° The same distinction is true of the source ID and target
PURCHASE_ORDER_ID columns

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[282]

°° We don't (yet) have any means to populate the PRODUCT_ID column,
so we'll have to rectify that soon with a join or lookup

°° There are a number of name mismatches (which is why automatic
mapping didn't pick them up), such as ITEMTYPE mapping to
PRODUCT_TYPE, CCTYPE mapping to CC_ISSUER

°° The FULFILLMENT_DATE mapping needs to be left empty as we don't
have that data yet

Bearing these points in mind, we create mappings for the CUSTOMER_ID and
PURCHASE_ORDER_ID columns that use a TO_NUMBER() conversion function
executed on the staging area. We then map the ORDER_DATE target column
to SYSDATE, again on the staging area. The rest of the mappings (except
obviously PRODUCT_ID and FULFILLMENT_DATE) can be created simply by
drag-and-drop from the source column to the appropriate target column.

If we wished we could either use appropriate database
functions in the mappings, or set the XML table's column
width and scale settings at the datastore level to actually
reflect our data to remove these warning symbols.

7.	 Next we need to add the PRODUCT_ID data, so we'll create a join with the
PRODUCT table in the Oracle DataMart model to provide that data. We
drag this datastore from the Models accordion panel into the sources area,
accept automatic mapping to create the PRODUCT_ID mapping, and then
create a join between the PURCHASEORDER and PRODUCT sources based on
PURCHASEORDER.PRODUCTNAME=PRODUCT.PRODUCT_NAME.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[283]

Before we go leaping ahead thinking that we've finished our mappings, we haven't
addressed the requirements for the STATUS column in the target. If you remember,
these require automatic approval for orders below $1000 and validation of the supplied
credit card number if the order value is above this threshold. We have the quantity
and price for each Purchase Order, so we can easily calculate the value, but within this
interface we don't (yet) have access to the credit card's validation status—and we need
to cope with the situation where a fictitious (or incorrect) card number is supplied.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[284]

If we simply create a default (inner) join between the PURCHASEORDER source and the
data mart's CREDITCARD table, it will result in ODI ignoring any purchase orders where
the given card number does not match one in our table of credit card data—which is
most definitely not what we want to achieve. Instead we'll use an outer join, which
will result in all the purchase orders being handled, but any credit card details that are
missing due to unmatched numbers will be presented as null values.

1.	 We drag-and-drop the CREDITCARD datastore from the Oracle DataMart
model into the sources area and create a join by dragging the CCNUMBER
column of the PURCHASEORDER datastore and dropping it into the CCARD_
NUMBER column of the CREDITCARD datastore.

2.	 We click on the join symbol (it will highlight the joined columns as in
the previous screenshot) and scroll down in the Property Inspector so
that you can change the join type to a Left Outer Join. The description
text will explain that all of the PURCHASEORDER rows will be included in
the join, even if there is no matching CREDITCARD row.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[285]

3.	 Now that we have all the data we need, we can correct the mapping for
the STATUS column in the target table. We click on this column and set
the mapping text to be:
case
 when PURCHASEORDER.QUANTITY * PURCHASEORDER.PRICE < 1000 then
 'Approved'
else
 case
 when CREDITCARD.VALID_STATUS = 'VALID' then 'Approved'
 else 'InvalidCreditCard'
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[286]

We mark the mapping to be performed on the staging area.

If we were going to use this mapping again later, it would be a candidate
for a reusable user function, but we'll leave it as it is for this example.

4.	 We click on the Flow tab and click on each of the Source and Target box
headers in turn, noting that for each of them the selected Knowledge Module
is <Undefined>.

5.	 We right-click on the Knowledge Modules node in the Projects accordion
panel within the Chapter 9 project and choose Import Knowledge
Modules…. We see a list of importable Knowledge Modules and choose CKM
Oracle, IKM Oracle Incremental Update, and LKM SQL to SQL, then click on
OK to import these three KMs.

6.	 Back in the Flow diagram, we click on the Source box header bar and then
in the Property Inspector below the diagram we set the LKM to be LKM SQL
to SQL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[287]

7.	 We perform a similar operation on the header of the Target box and set the
IKM to be IKM Oracle Incremental Update.

8.	 Then we click on the Controls tab and set the CKM Selector value to
CKM Oracle.

9.	 Finally we Execute the interface (accepting the execution defaults) and check
that the data made it to the target table successfully using Operator.

Since the start of this chapter's sample exercise we have:

•	 Added Topology definitions for an XML data server to map onto our source
file and the ODI Physical and Logical Schemas associated with it

•	 Reverse-engineered the XML file into an ODI model
•	 Used the datastore representing the XML file as a source in an interface to

integrate the data into our source data mart
•	 Executed the interface and checked that the intended data was loaded into

the target table

While we were doing this you may have noticed once more that once we had the
model reverse-engineered into ODI, we could access XML data in exactly the same
way as RDBMS or flat-file data.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[288]

However, it is also the case (similar to the flat files we were dealing with in the
previous chapter) that the file name is hardcoded either in the Topology definitions
(for XML files) or in the datastore definitions (for flat files). So what do we do if we
have multiple XML files that all need to be integrated, like for our Order Processing
situation? Having separate data server definitions in our Topology for each and
every XML file is unwieldy and totally impractical.

In practice there are multiple ways this can be addressed, but we're going to look at a
simple approach next that also highlights a very important factor when dealing with
XML files in ODI (remember we left a thought hanging). The approach we're going to
take exploits ODI Procedures to do some file manipulation.

Creating procedures
Imagine if you had your XML Data Server definition set up using a fixed, but
dummy filename and you copied or renamed each of the desired source files in
turn to have the right name to be picked up by the Data Server definition. We'll go
through the following steps to create a procedure which will copy and rename our
XML files:

1.	 In ODI Studio, we switch back to the Topology navigator tab and open the
XML Single PO File data server entry for editing. On the JDBC tab, we
change the f= parameter to refer to the c:/po/input/single_po.xml file.

2.	 We switch to the Designer navigator tab and in First Folder within
Chapter 9 project we create a New Procedure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[289]

3.	 In the Procedure editor we set the name to CopyXMLOrderForInput on the
Definition tab and leave the source and target technologies as <Undefined>.

4.	 We then click on the Details tab and add a new command step by clicking on
the green plus sign above the (currently empty) command list.

5.	 In the Command tab that opens, we name the command Copy XML PO File,
in the Command on Target subtab we set the Technology to ODI Tools and
enter the following text (all on one line) in the Command field leaving all the
other values as they are:
OdiFileCopy -FILE=c:/po/input/order_20001.xml
 -TOFILE=c:/po/input/single_po.xml -CASESENS=yes

OdiFileCopy is an ODI Tool, which we'll cover in
the next chapter along with the packages.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[290]

6.	 We save our work and click on the Execute button in the main ODI Studio
toolbar using the default settings. After execution we can see that a new
single_po.xml file has been created in the C:\po\input directory.
This approach is still not going to work because we hardcoded the original
file name in the text of our procedure. What we need to do is pass in the
original filename as a parameter, in this case we'll use a Procedure option.

7.	 We expand the Procedures node in Chapter 9 | First Folder, right-click on
our new procedure's node and select New Option.

8.	 We call the option POSourceFileName, set its Type to Value, its Position
to 0, and its Default Value to C:/po/input/order_20001.xml.

9.	 Next we need to alter the procedure so that it uses the value of the option
rather than our hardcoded source filename, so we save all our work, close
the Option editor and back in the procedure command field we change the
first parameter passed to the OdiFileCopy command to be:
 –FILE=<%=odiRef.getOption("POSourceFileName")%>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[291]

getOption() is an ODI substitution method which
substitutes the value of the option at execution time into the
code generated by ODI. In our example it will return the
source filename that we're going to copy into our "known"
location which we set in our topology definition.
There are many more substitution methods which can be
used to create generic code in ODI. Their documentation is
part of the Knowledge Module's Developer Guide which can
be found (at the time of writing) at http://www.oracle.
com/technetwork/middleware/data-integrator/
documentation/index.html

Now what would happen if we changed the default value of our procedure
to use a different XML file such as C:/po/input/order_20002.xml? If we
were to re-execute our procedure with this new value and then look at the
data in Designer, we would still see the data from the previous file (C:/po/
input/order_20001.xml).
Recall that the XML driver loads data into an in-memory area for
manipulation. Well we've done nothing to force the driver to reload its
in-memory data from the file so it's still running off the old data. We need
to create a new Procedure so that ODI can refresh the in-memory data.

10.	 We create a New Procedure called RefreshSingleOrderData and on
the Details tab add a new command. We call the command Synchronize
From File, set the Technology for the Command on Target to be XML,
the Schema to be XML PO, and enter the Command text, SYNCHRONIZE
FROM FILE, as shown in the following screenshot:

11.	 We save and execute this procedure and then view the data in the XML
PURCHASEORDER datastore again. This time we can see the data from
the new XML file.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML Files

[292]

When integrating this last file we've seen three things:

•	 Changing the contents of an XML file doesn't automatically change the
contents of the in-memory representation of the file that the ODI XML
driver holds (and the reverse is also true). This is one of those things that
can occasionally "bite" if you don't watch out.

•	 There are times when it is necessary (not just desirable) to perform a
predictable sequence of operations, even just to integrate data into a
single table:

°° Renaming/copying a file
°° Synchronizing with that file
°° Running an interface to integrate the data it contains
°° Usually renaming/copying the processed file into an archival area

We will cover this kind of orchestration in the next chapter when we examine
ODI Packages and Load Plans.

•	 When running a procedure manually, the only way we could change
the value of the Option (parameter) we created was to change its default
value. What you'd expect to be able to do is use some kind of variable as
the parameter and change the value of the variable based on some other
processing. ODI variables can be used for that purpose, however variables
in ODI only take on values inside a Package, a Scenario, or a Load Plan, so
we won't be using them in this chapter.

If you don't want to continuously have to copy XML files
around (and if they're large, you would probably want to
avoid this) you can in fact use an ODI variable in the Topology
definition for the XML Data Server (in the connection URL) to
represent all or part of the filename. This would mean that you
could only connect to a new file, synchronize the data, and so
on from within a Package, but for production running this isn't
really a limitation because normally everything is run as part of
a Package. Also be aware that this approach would only work if
all the XML files have the same structure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[293]

Summary
In this chapter we've successfully consumed XML files in our integration activities.
Along the way we've explored a number of aspects of working with XML as well as
some other extremely useful capabilities of ODI 11g:

•	 We've seen how XML Data Servers are associated with file references—both
for the datafiles and their schema definitions and how, by using ODI
Procedures, we can manipulate those files to enable a single data server
access to multiple sets of file data.
There are other, more sophisticated ways to achieve this, but at least we've
covered enough to "get started".

•	 We took a look at how the XML driver breaks down a hierarchical tag
structure from a file into a number of related in-memory tables and how
it adds columns to maintain the ordering of entries and the relationships
between them.

•	 We've experienced the separation between the file data and those in-memory
tables and how care must be taken to ensure that these are synchronized if
changes are made to one or the other.

•	 We also had our first glimpse at ODI Procedures and the requirement for
sequencing (also known as orchestration) of data integration activities.

In the next chapter, we'll take a deeper look at the orchestration of data integration
tasks and investigate some of ODI's comprehensive and flexible capabilities in this area.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Workflows—
Packages and Load Plans

Once individual interfaces have been created, you will want to orchestrate their
execution. Part of the orchestration will be the definition of the order in which the
interfaces have to be executed, which elements will be executed in parallel or in a
series, and which other operations you will want to add to your processes to make
the overall orchestration more sophisticated. In this chapter, we will review three
elements that will be needed to achieve these goals: Packages, Load Plans, and
ODI Tools.

Packages
Packages are the basic element of orchestration in ODI. This is where you will
sequence your interfaces, and define what operation to perform when a step (or
interface) fails. One important point to keep in mind is that packages can be very
sophisticated with the use of tools, but the execution of the different steps in a
package is always sequential. For execution of steps in parallel, we will look into
Load Plans a little further down in the chapter.

Creating a package
Since you cannot use an interface from a different project in a package, packages
will be created in the same project as the interfaces.

Further, for the code to be easier to maintain, one approach is to organize interfaces
and packages in a folder (and as many subfolders as needed) so that a folder only
contains one package and the interfaces needed for that package. Interfaces that
would be shared across packages can be grouped in a separate folder, still in the
same project.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Workflows—Packages and Load Plans

[296]

To create a package, go to the Packages entry under your folder, right-click on
Packages and select New Package.

The very first task will be to name the package. You will not be able to save
a package without a name. You then have to click on the Diagram tab at the
bottom of the package definition to start designing your package.

Before we look into building a package, you need to be aware of some characteristics
of packages:

•	 A package has only one entry point (or first step). The first step is marked
with a green triangle at the bottom right of the icon of the step itself.

•	 Steps are sequenced in terms of successes (Ok, or green arrows) and errors
(Ko, or red arrows). If a given step is successful, ODI will follow the green
arrow to the next step. If the step fails, ODI will follow the red arrow to the
next step (if any).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[297]

•	 If no arrow follows a step, the execution will stop. If that last step is
successful, the entire package is successful. If that last step fails, then the
entire package fails. One consequence is that if on one step you decide
to have the green and red arrows point to the exact same next step, then
errors in that step will basically be ignored.

Adding steps into a package
There are two ways to add steps in a package. You can either close the package and
drag-and-drop the objects you want to add to the package on the package name in
the tree view. If you add the objects in the order in which you want them sequenced
in the package, ODI will do all the sequencing for you (the first object added will be
the starting point and the green arrows are drawn for you from step to step).

The other approach is to open the package Diagram and to manually position the
objects and draw the arrows to define the sequence of execution.

The objects that you can drag-and-drop on a package are interfaces, variables,
procedures, scenarios, models, and tables.

Variables are outside of the scope of this chapter, but generally speaking different
actions are possible for variables:

•	 Declare variable: Positioned at the beginning of the package, variables
would receive values passed as parameters to the package

•	 Refresh variable: Run the SQL query associated with the variable to refresh
its value

•	 Evaluate variable: Compare the variable value to some value (or other
variable) and branch out following a True (Green) or False (Red) arrow

•	 Set Variable: Assign a value to a variable

Models and tables are used in packages to automate CDC operations (Changed Data
Capture, or detection of changes on a system)—start CDC, stop CDC, and more
advanced operations related to CDC.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Workflows—Packages and Load Plans

[298]

Interfaces, procedures, and scenarios will be added to the package to define the
order in which they will be executed. Tools will be added to enhance the workflow
behavior. We will have more details on tools later in this chapter, but a few examples
of tools would be detection of events, sending e-mails for notifications, or invoking
operating system commands.

When a Package is designed manually, the ok arrows (success) and ko arrows
(failure) must be drawn manually—change the cursor by clicking on the single green
arrow or single red arrow in the toolbar. Then left-click on the first object (do not
release the mouse button), drag the cursor to the next object in sequence and release
the mouse button. The arrow will be drawn between both objects. If the arrow does
not end up the way you want (releasing the mouse button would typically end up in
an arrow that loops on the same object) you can simply repeat the operation—since
there will be only one Ok (green) and one Not Ok (red) arrow per object, redrawing
the arrow will replace the earlier definition.

You can also select the arrow and hit the Delete key on your keyboard to remove an
invalid arrow if needed.

At run time, ODI will follow the "green" arrows as long as execution is successful.
When an execution error is encountered, ODI will follow the "red" arrow. If an object
has no arrow to follow, the execution will stop and the status of the entire package
will be the same as the status of that last object: success or failure. In other words, if
you do not process execution errors, the package ends in error.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[299]

Adding tools in a package
The most sophisticated of packages will leverage ODI tools. Outside of ODI tools, an
ODI package does not do much more than what can be done with stored procedures
in a database (except that thanks to the use of the graphical interface and KMs, you
should be much more efficient at getting the job done). ODI tools can be organized in
different categories: Changed Data Capture (CDC), Event Detection, Files, Internet,
Metadata, ODI Objects, Plugins, SAP, and utilities.

Changed Data Capture
CDC tools will be used to allow the package to wait for new data in CDC tables.
Other tools will force a refresh of the count of CDC tables (the journals) or investigate
the journal tables.

Event Detection
Beyond CDC, other events can be detected: flat files detection, new e-mails,
completion of other ODI scenarios, and so on, all very convenient for a more
advanced orchestration than basic scheduling.

Files
File operations will include detection of new files on the operating system, moving,
copying, deleting files, creating files (as a result of a SQL query or otherwise), zipping
and unzipping files, and splitting and concatenating XML files. These operations
will be very handy when file handling is a great part of the data integration process.
For instance, detect that new files are available, archive them once they have been
processed, and wait for more files to be available.

Internet
Often times, the data that must be processed has to be accessed remotely, or the
result of the data integration process has to be pushed to a remote location. Web
Services, FTP, SFTP, SCP, and e-mails can all be used to retrieve or send data.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Workflows—Packages and Load Plans

[300]

Metadata
Metadata tools are rarely used as is in packages. They are commonly used in
Reverse-engineering Knowledge Modules to import metadata from databases.

ODI Objects
These tools manipulate objects in the ODI repository (import, export, delete, and
regenerate scenarios). They can be very useful to automate lifecycle management.

Plugins
The plugins are typically custom-coded tools. If you decide to create your own tools,
they will appear in the Toolbox as Plugins.

SAP
One way to exchange data with SAP applications is to leverage IDocs files that are
close to an XML format. Dedicated tools are provided to communicate with SAP by
using actual XML files. The tools will translate XML to and from IDocs.

Utilities
A series of other tools are available to perform all sorts of operations: invoke
operating system commands, beep, invoke the data quality tool, ping the ODI
agent, purge the ODI logs, start a load plan or a scenario, and so on.

Adding tools to a package
When you click on the name of a tool in the toolbox, the mouse cursor will change
into a crossbeam. From then on every click in the package will add a new instance
of the tool. When you want to release the tool selection, click on the arrow cursor in
the package toolbar. The mouse cursor will return to the default arrow. If you end up
adding more instances of a tool than needed, click on the arrow cursor in the toolbar
and select the extra tools. You can then either right-click on the icon and select
Delete or hit the Delete key on your keyboard.

Using ODI Tools
When it is added to a package, each tool will display a grid where parameters can be
entered (in the General tab).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[301]

The grid will help with a contextual list of possible values for each parameter. The
Command tab will display an API version of the same command. This API version can
be used in procedures when the technology for a given step is set to ODI Tools. You
can set and modify the parameters in either the General view, or the Command view.

Retry versus fail
Every step of a package can be defined so that in case of error the step is tried
again for a certain number of times before failing (or before going down the path
of a "red" arrow).

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Workflows—Packages and Load Plans

[302]

If you click on any of the steps, the properties window will have an Advanced tab.
In the Processing after failure portion of the window, you can enter the Number of
attempts and the Time between attempts (expressed in seconds) that you want to
wait before trying again.

This feature can be extremely useful if you know that one of your connections is
prone to failure when you are supposed to process the data. You can have ODI keep
trying to process during the expected downtime. If the downtime exceeds the normal
duration you can error out—and typically send a notification to some administrator.

Best practice: No infinite loop
You will quickly notice that it is easy—and convenient—to define loops into your
packages. One point to pay attention to though is as long as the package is running,
the same job generates new steps in the Operator logs and this job cannot be purged
until it is completed. For the sanity of your logs—and to make it possible for human
operators to understand what is happening—remember to never have an infinite
loop in your packages. Packages must finish eventually. What you can do though is
use the tool ODIStartScen and start the same scenario asynchronously (the scenario
is a compiled version of the package—more on this will be covered in the following
section). An asynchronous call means that you will fire up a new process and
continue. If this is your last step, the package finishes. If you start the scenario with
version "-1" you will always execute the latest version of that scenario.

Generating a scenario from a package
The scenario is the "compiled" version of the package. More accurately, it is a frozen
version of the package where the code has been pre-generated. Only the topology
information has not been defined, so that it can be updated based on the context
selected at execution time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[303]

To generate a scenario, right-click on the package name in the tree.

A scenario is made up of a name and a version. ODI will automatically increment
the scenario version with each scenario generation from the package. You can of
course modify the version number as needed: if ODI increments from 1.1 to 1.2
and you would rather increment to 2.0, you can definitely do so by overwriting
the version number.

If you want to regenerate a scenario and overwrite its previous definition, you have
to right-click on the scenario itself and select Regenerate Scenario. ODI will refuse to
overwrite a scenario with the same name and version number if you are generating
from the package name.

Load Plans
As we have seen so far, packages only handle serialized execution. Each step
executes after the previous one and before the next. Load Plans will bring additional
functionalities that will allow for more advanced orchestration of the processes.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Workflows—Packages and Load Plans

[304]

Serial and parallel steps
When a Load Plan is defined, the first operation is to define if steps will be executed
in sequence or in parallel. You can obviously mix and match serialized and parallel
branches as needed.

In the previous example, we will load our Customer data and our Product data in
parallel, since there is no dependency between these two sets. Each set can be made
of several steps that can be, in turn, executed in a serialized or parallel fashion.
You can see here that steps in each set are executed in sequence. When both sets
are completed, we then process our Sales data. This step is serialized because it is
dependent on both customer and product data.

Objects that can be used in a Load Plan
The following objects can be used in a Load Plan:

•	 Scenarios
•	 Interfaces
•	 Variables (in particular to use as decision points with a "case…when…" syntax)

These objects can be dragged from the Projects tree on the left directly into the Load
Plan to create a new step. However, whenever an object is added to a Load Plan,
what is added is a scenario generated from this object. If you add an Interface or a
Variable, ODI will automatically generate a scenario and add this scenario in the
Load Plan. This means that if you perform changes to the object after it has been
added to the Load Plan, you will have to either regenerate the scenario, or generate
a new version of the scenario and edit the version number in the load plan. One way
to limit the amount of edits is to use "-1" for the version number, so that the load plan
always uses the most current version of the scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[305]

To modify the version of a scenario that will be executed in a Load Plan, click on the
Load Plan step; a magnifying glass will appear. Click on the magnifying glass to edit
the version number.

You can also right-click on a step to modify its references: regenerate the scenario
that is currently used, or update the scenario version to the latest one that has
been generated.

Exception handling
Exception handling can be quite complex and there is a need to go beyond what
is offered by packages. The default behavior in a package is to restart a package
from the last point of failure. This is very good in a sequential execution, but when
processes start to invoke other processes and run in parallel, restarting a job gets to
be trickier. Do you want to restart from the point of failure, or to restart the entire
step? Or maybe the entire branch?

Load Plans allow you to specify for each step what the behavior must be in case of
an exception.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Workflows—Packages and Load Plans

[306]

In addition to choosing the restart point, you can also define ODI behavior in case of
error in each step.

As shown in the previous screenshot, the properties panel lets you choose for each
step of the Load Plan an Exception Step to execute in case of failure. Raising an
exception (which would stop the process) can be set to Raise or Ignore. Raise will
stop the execution and report an error in the operator window.

Exception steps are defined in the Exceptions tab of the Load Plan.

Rather than simply error out and wait for the operator to take some action, you can
trigger all necessary actions immediately, whether you want to notify an operator or
start some-self correcting process in the form of an ODI scenario.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[307]

Using Packages and Load Plans
Packages have a natural place in Load Plans: they can be used to define complex
operations that are executed in sequence and multiple packages can be executed
in parallel within a Load Plan.

Load Plans are "execution" objects. They can be created directly in the production
environment if needed. However, Load Plans can be invoked by packages with a
tool called OdiStartLoadPlan that is very similar to the tool used to start scenarios.

Summary
In this chapter, we have seen how to orchestrate processes in ODI, whether it is
with packages or Load Plans. Both approaches offer different sets of benefits, from
the sophistication of the processes in packages to the flexibility of the Load Plans.
By combining both, you will be able to orchestrate the most advanced deployments
for your data integration projects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Error Management
If only everything we developed and used worked perfectly each and every time!
Unfortunately in the real world the topic of error management—how to discover,
diagnose and correct errors—is a fundamental part of "business as usual" operations.
It's also one of those areas of knowledge and skill which constantly grows with
experience and familiarity with a product or system.

There are three main categories of errors and error management when it comes to
ODI, namely:

•	 Data errors: These occur when we encounter "bad" data during data
integration tasks. This subject area covers ODI's error tables, detecting
and diverting non-compliant records, and correcting and recycling error
records—essentially ODI's basic data quality capabilities and mechanisms.

•	 Execution errors: These occur when one or more steps in an interface,
procedure, package, or scenario fail to complete successfully. We've already
spent some time looking at execution logs in Operator Navigator of ODI
Studio and seen the use of error paths in package orchestration flows, so
we'll only have a brief recap here.

•	 Operational errors: These arise if one or more of the underlying platform-level
or infrastructure components encounter some kind of exception. This area
forms part of management and monitoring, especially locating and viewing
system component (for example, ODI Agent) log files and is primarily
described in a later chapter, although we'll cover a high-level overview here.

So it's the first category of error management listed previously that is the main focus
in this chapter. The major topics we'll cover are:

•	 Detecting and diverting data errors in ODI
•	 Correcting and recycling those data errors

www.it-ebooks.info

http://www.it-ebooks.info/

Error Management

[310]

Managing data errors
Data errors in the context of ODI refer to records that do not conform to a set of keys,
constraints, references, and conditions that describe the values, patterns, uniqueness,
and relationships we require of that data. Examples in the context of an Order
Processing scenario include:

•	 An order where the customer ID is incorrect or missing
•	 An order where the customer ID exists and is correct, but the corresponding

customer record has an incorrect or missing reference to a sales person or
partner to whom we can pay commission as the source of the sale

What we're really dealing with here is a basic level of data quality enforcement.

Detecting and diverting data errors
The first step in managing errors of any kind is to identify when they arise and
isolate their effects. When dealing with data quality we typically want data that
does not comply with our quality rules to be temporarily diverted into some kind
of holding area (occasionally called an "error hospital") where corrections can be
applied before the amended data can be re-introduced into the main environment.
But first we need to detect the violations of our quality rules.

Data quality with ODI constraints
So how can we spot the data errors listed earlier? We would need to specify the
required quality characteristics of the data we integrate into a data mart by setting
ODI constraints on the target tables we populate. We would then detect and divert
the non-compliant records by making sure that an appropriate Check Knowledge
Module is specified in the interface performing the data integration and trigger its use
by setting the FLOW_CONTROL option of the Integration Knowledge Module to true.

If instead we simply add the constraints to the underlying database schema, what
would happen? Well, if we don't reverse-engineer those constraints into the ODI
models for the amended database tables, ODI would be unaware of the additional
data integrity requirements and would try to insert or update records into the
database tables which would trigger errors. Those errors raised would have been
database errors, which would cause the whole insert, update, or merge database
statement to fail. The only sensible steps for ODI to take when it receives a database
error are to halt its processing immediately and mark the accompanying session as
having failed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[311]

Remember that ODI performs set-based SQL operations which
either succeed or fail in their entirety, as opposed to the conventional
approach of row-by-row processing where the same rule may be
applied, but at the row level, allowing the appropriate action to be
taken, but in a slower overall way.

The key point is that even one "bad" column value in one record could stop the
whole set of data from being integrated into the desired target.

It's not often that you want one mistyped entry on an order to stop your complete
sales Order Processing system in its tracks. So by taking the approach of adding the
constraints into the ODI model for the corresponding tables, we enable ODI to detect
which of all the records being integrated don't comply with the quality rules, allow
all of the other records to continue to be processed normally, and only divert the
non-compliant records into some kind of error hospital.

Ideally we would want to have the quality rules applied directly in the database
and in ODI, so that we still see the error handling behavior of ODI; but the data
is protected from corruption by other systems, applications, or direct access. This
can be achieved by adding the new constraints to the underlying tables and then
repeating the reverse-engineering process for ODI, making sure that the Existing
Datastores checkbox is selected in the Selective Reverse-Engineering tab to enable
incremental reverse-engineering.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Management

[312]

In our example, as seen in the preceding screenshot, we have selected the
PURCHASE_ORDER table to be reverse-engineered into the current data model.

Incremental reverse-engineering in ODI
Reverse-engineering in ODI is purely additive: if we were to drop
a column or constraint on the underlying table, this would not
be reflected in the ODI model of that table, so care must be taken
when taking this course of action. (The underlying reason for not
dropping metadata information from a datastore is that such an
action might easily break interfaces which are currently referencing
the datastore in question. Therefore, deleting existing metadata
becomes a manual process.)
Furthermore, if a database object (constraint, index, and column) has
been renamed since the time when the datastore was first modeled,
then there is a potential for a "doubling" of metadata elements.

There may be circumstances where you cannot have the constraints defined both in
the database and in ODI. For example, you may not have the privileges to edit the
database metadata. This is where ODI has an advantage because ODI constraints
are defined at the metadata level, so in some circumstances ODI is able to impose a
higher level of quality on the data than the database itself.

There are three types of ODI constraints:

•	 Keys correspond to primary keys, alternate keys, or indexes in the
ODI metadata.

•	 References represent foreign keys which link two datastores together.
•	 Conditions are business rules expressed in SQL which are used to

validate the data in the datastore. It is possible to set a specific error
message per condition. This error message will appear in the error
tables along with the invalid records.

ODI constraints are created at the datastore level in Designer Navigator as you can
see in the following screenshot.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[313]

Remember that adding new constraints in the ODI metadata will not impact the
underlying database. In case you would like to reflect the modifications you made in
ODI at the database level, it is possible to generate a Procedure containing the DDL
statements. This can be done from a model using the Generate DDL menu item.

ODI error table prefix
We saw how we could view the errors that had been diverted out of the integration
flow of the interface by right-clicking on the datastore in the Models accordion pane in
ODI Studio and selecting Control | Errors, but where are those errors actually held?

You may remember from previous chapters that when we set up the topology details
of a physical schema, there are some Work Table Prefix fields just below where the
schema names are specified.

As you can see in the preceding screenshot, the prefix for the table that contains
errors is E$_ and it is the default prefix. Therefore if data errors are detected by
the CKM when loading a CUSTOMER table in our DATAMART physical data schema,
those errors will be diverted into a table called E$_CUSTOMER located in the ODITEMP
schema since that's our chosen work schema name.

We can also see that these fields are not greyed out (unlike the automatically created
ODI schema name), so if we desired we could change these prefixes. Indeed, there
are some systems and programs that have problems accessing tables that include
characters such as $ in their names. So if we wanted to use one of these programs
or systems directly to read the error records from our error tables to correct those
errors, we would have to change the prefix to something else, such as ERR_. The ODI
Knowledge Modules and ODI Studio environment pick up these prefixes internally
by using substitution methods, so changing a prefix should not normally damage
ODI's behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Management

[314]

Be aware when changing prefixes, some databases have a
maximum length that can be used for table names. Do not use
excessively long prefixes or you may introduce unexpected
problems in ODI's operation.

Contents of an error table
ODI error tables have a structure that includes all the columns and definitions of
the corresponding data table with additional columns to record information such as
whether the error was detected during static or flow control ("S" or "F" error types),
the message associated with the error, the check date, the originating ODI object (the
interface or scenario that raised the error), constraint name and type (for example,
"FK" for a reference, "CK" for a condition), and the ODI session number that detected
the error.

This additional information is used by ODI to identify which error rows are candidates
for recycling when a specific interface or scenario is re-executed.

Note that the structure of the 11g error tables is different from the
10g error tables, so existing error tables will need to be rebuilt to
avoid 11g runtime failures. This can be done automatically using
the UPGRADE_ERROR_TABLE option of the 11g CKMs.

Using flow control and static control
So far we have seen how to use flow control—non-compliant records have been
diverted out of the integration flow before they ever reach the target datastore. As
an alternative (or supplement) to this, the IKM can be configured to have the CKM
perform a static check on the complete target table once the complete interface flow
has been integrated into the target.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[315]

This is especially useful if the ODI constraints are more rigorous than those defined
on the underlying database and where a data change may break constraints for
existing data in the target table.

Say we have a table of employees with their employee IDs and a column that
identifies their manager via their manager's ID. If you have an update where an
employee's ID is changed (for whatever reason), their manager's ID may still be
valid. However, if they also managed a number of other people, their team members'
records would now have an invalid manager ID—despite the fact that those records
themselves weren't changed at all.

When used in this way, static control also creates entries in the corresponding error
table for the target of the interface. However, using flow control will mean that these
records are diverted before they reach the target table. Static control leaves the non-
compliant records in the target table and simply copies the record information into
the error table. This is because ODI cannot be sure of the origin of those records and
whether their removal will cause downstream errors or failures to other systems.

You can configure whether you want an individual constraint to be applied during
flow control and/or static control by selecting checkboxes on the Control tab of
the definition of the constraint on a datastore. The following is a screenshot of the
Control tab of a constraint where you can see the two control checkboxes, namely,
Flow and Static.

The Synchronous Control section shown in the previous
screenshot allows ODI to simply count the number of records
that violate the chosen constraint (which is expressed in the form
of an SQL WHERE clause) when the tick is clicked. This kind of
check does not add records to the corresponding error table. It is
also valid to perform this kind of check for simple homogeneous
conditions such as evaluating the uniqueness of a new key, or the
number of records that fall outside a required value range.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Management

[316]

Using error thresholds
While we probably don't want to halt an entire data integration process due to one
piece of bad or missing data, we want to protect against flooding our error handling
system if we receive a set of particularly poor quality or corrupted data. This is
especially true if we're working with outside agencies and we have no control over
the generation or extraction of the data that we are required to integrate into a data
mart or data warehouse. For example, receiving a set of 90000 orders from a new
partner's website might seem to be a welcome sales boost on the surface, but if every
product ID in those orders is based on the partner's unique and proprietary coding
system rather than the scheme that we rely on in-house, then we'd most likely end
up with 90000 error records to deal with. It would probably be easiest and best in
the long run to reject the whole batch and firm up our service level terms with that
partner to specify which coding scheme must be used.

ODI allows us to guard against unusually poor quality source data by letting
us place thresholds on the maximum number (or percentage) of non-compliant
records it will divert into the error table before it places the whole interface
execution into a failed state and suspends the processing of the session. The
threshold value chosen for an interface is set in the Control tab of its definition,
the same place where the CKM for the interface is specified. When selecting a
threshold value, you may choose either a percentage or an absolute record count.
When a percentage is indicated, this value will get checked after the whole set
of conditions has been evaluated. However, when a specific number is specified,
then as soon as the total number of errors after each check exceeds the threshold,
execution is halted; a subtle but useful distinction when there is large volume of
data or a large number of checks to be performed.

As you can see in the following screenshot, the threshold value can be set using the
Maximum number of errors allowed field in the Controls panel of an interface.

Correcting and recycling data errors
We know that we can set the difference between good and error records by adding
constraints. We also know that we can apply these constraints and detect all the error
records by using flow and/or static control in an interface. We also know where all
the error records are stored. But what do we do about them?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[317]

The process of rectifying incorrect or missing data will depend on numerous
factors, including:

•	 The "ownership" of the source data—if it comes from an outside agency, or
direct from user or citizen input, and do you have the "right" to change it

•	 The nature of the data error—if it's missing or partially corrupt such
as having one incorrect letter or digit), can it be found or inferred from
elsewhere, and so on

•	 Whether the error is temporary
•	 Organizational policy—some organizations will have rules, some of which

may be legally imposed upon them, when dealing with data corrections

These points will hopefully make it clear that the mechanisms and process for
correcting errors form too wide a topic to be covered in this book. Indeed, this is one
of those issues for which there is no single correct answer.

There will also be occasions where an error is only temporary and doing nothing to
the error record is the correct policy. Say we process orders by integrating incoming
data at several points during the day, but we only integrate customer data once each
day at the start of operations. We're very likely to have orders arriving from new
customers where the customer data doesn't exist in the data mart. However, all we
have to do is wait until the next day, by which time the new customer data will have
been added and then re-process the order data without change.

This latter case can be handled automatically by ODI by configuring the RECYCLE_
ERRORS option of an IKM to TRUE—as it was in the screenshot of the IKM options
in the Using flow control and static control section. This simply signals to the IKM
to extract the data from previous runs of the interface out of the error table for the
interface target and re-insert it into the integration flow just before the flow control
checks are performed. If the constraints are passed successfully the second (or later)
time around, the data is integrated into the target without any further intervention.
Note however, if any of the data integrity checks fail again during the next
integration cycle, the offending data will once more be diverted into the error table.

This capability is also extremely useful when considering an overarching error
correction process when dealing with ODI: if we correct the individual data errors
in the error table (add missing fields, modify incorrect values, and so on) and have
error recycling enabled, then the corrected records will automatically be integrated
into the desired target on a subsequent run of the interface that originally detected
and diverted the errors in the first place.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Management

[318]

Generally speaking, it is not considered best practice to correct
data errors solely by effecting changes to the data contained in the
error tables without also attempting to get the source system(s)
that provided the original data to make similar corrections. To do
so will mean that the same non-compliant data could return and
create the same errors sometime in the future.

The actual error modification can be performed by an external system—the
important thing is that the error table is updated with those modifications.

There is an Oracle By Example tutorial available in the Fusion
Middleware section of the Oracle Learning Library called
"Creating an ODI Error Hospital that uses BPEL Human
Workflow" (https://apex.oracle.com/pls/apex/f?p
=44785:24:3481539500422101::NO:24:P24_CONTENT_
ID,P24_PREV_PAGE:4350,29) which shows the use of Oracle
SOA Suite to orchestrate the correction and recycling of ODI
errors. Although this example was built using the 10g versions
of both Oracle SOA Suite and ODI, the principles hold true for
the 11g versions of each product.

Recycling errors and ODI update keys
A short explanation of part of a mechanism used in ODI interfaces to uniquely
identify each and every record will add clarity here.

ODI and the IKM being used in an interface must be able to identify individual records
when integrating data into a target, for example to determine whether the record will
result in an insert of a new record or an update of an existing row in the target table.
This is achieved by making sure an update key exists for the target datastore.

By default, ODI extracts the update key information from the
primary key definition of the datastore in the ODI model (originally
reverse-engineered from the underlying database). If we want
to add more columns to the update key we could alter the ODI
metadata definition of the primary key constraint on the target
datastore. We can even ignore the primary key definition altogether
and choose a different update key or set of columns on the target
datastore properties sheet of the mapping tab of the interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[319]

So when considering which records to re-insert into the integration flow, the IKM only
extracts records from the error table that were caused by a previous execution of the
same interface or scenario and also ensures that recycled error records do not clash with
(that is have the same update key as) incoming records from the source datastore.

Precedence is given to the source records over the error records—it would be
extremely annoying and somewhat confusing if you corrected the non-compliant
data in the source table, re-executed the interface, and yet the previous error data
continued to overwrite the newly corrected source data.

Managing execution errors
Execution errors can be categorized in a number of ways, but for the sake of
simplicity we'll use a simple matrix to divide between design-time and run-time
in one dimension, and anticipated versus unexpected in the other, to distinguish
between the tools and approaches that are most likely to be used in each
circumstance:

Anticipated Unexpected

Design-Time

Run-Time

Error path in

ODI package or

scenario

Error path in

ODI package used

to build scenario

Operator Navigator

in ODI Studio

ODI Console

Handling anticipated errors
If we can anticipate that an error might occur, such as a database server being offline
or unreachable, then we should be able to specify what should happen in the event
of such an error. We should build our systems (ODI packages, scenarios, or load
plans) to cope with this type of error.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Management

[320]

The mechanism to use for this in ODI is the error (KO—or "not OK") path in the
ODI Package editor. By using this technique we can send alerting e-mails, perform
automated investigation or mitigation activities, and so on.

An important point to remember is that if our post-error
processing completes successfully (for example, the alert mail
is correctly sent), then the session will be marked in the session
log as having completed successfully. If we want the session
to be marked as having failed, and this will depend on each
organization's operational policy, then we will have to force the
last step executed in a package (or its derived scenario) to fail.

Causing a deliberate benign error with OdiBeep
A "trick" frequently used to force a session to be marked as having failed is to use
the OdiBeep tool step as the last activity in an error path. This tool step, found in
the Utilities category in the Package editor, can take a sound file as a parameter
value (using a FILE= syntax) and would normally play that sound file on the host
executing the package or scenario.

However, if you deliberately specify an incorrect parameter on the Command tab
for the step, the step will fail on execution—with no other adverse effects on system
resources or data. It's probably best to rename the package step to reflect its intention.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[321]

Handling unexpected design-time errors
We've already used the Operator Navigator of ODI Studio and seen that when data
errors occur then the status indicator of an execution session is changed to show
a warning symbol. You may already have seen what happens when a full error is
encountered and the execution session fails:

The previous screenshot shows a session that has failed. Drilling down into the
session steps and opening up the failed session step reveals that the cause is the use
of a TO_DATE function on an XML source data server (that is the in-memory engine).
This is not altogether surprising because the mapping that uses this function should
have been marked to be executed on the staging area, not the source—the source
doesn't support this mapping syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Management

[322]

More detailed error investigation in Operator
Navigator
What can you do if you have a less obvious error? The following screenshot shows
an Unexpected token error (caused because we purposely selected the QUANTITY
column twice):

Clicking on the Code tab for the step reveals the actual code that was executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[323]

The original error message says the fault was detected on the source, so we know
to check the code for that section. Sure enough we seem to have inadvertently
dragged the PURCHASEORDER.QUANTITY column from our source datastore twice
onto our target because it has a double entry (C6_QUANTITY and C9_QUANTITY) in
the select statement.

That was an easy one to spot, but if something even more obscure occurs you can
take advantage of an additional ODI capability. If you click on the Query/Execution
Plan link you will see a SQL query window appear in which you can amend the
code and execute the query to drill down into the true cause of any error and how
to correct it.

The execution plan cannot be built for the example query because there's a syntax
error—which we already knew! If we were to remove the second reference to the
PURCHASEORDER.QUANTITY column and click on Run SQL Code then we would see
the returned records in the middle section of this dialog.

Some errors can be detected even before execution by using the
new ODI 11g Simulation feature in the ODI Studio. This feature
sequentially generates all of the SQL statements that would be
used during an actual execution of the specified interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Management

[324]

If the error is a simple one to rectify in the SQL code (such as the one here) then you
can change the code to be executed directly on the Code tab, save the session, and
then restart the session (right-click on the session and choose Restart). Note that this
should only be done during design-time unit testing as only the code in that specific
session instance is changed.

This approach generally works best if no other sessions have been run since the
failure occurred. If the queries or session to be restarted rely on temporary tables that
have been created in the early part of the scenario or interface execution, they will
need to exist in the state when the failure occurred for the restart to work correctly.

Although ODI provides this built-in SQL window, some external
SQL tools like SQL*Plus provide better diagnostic messages—often
highlighting the exact character position where a syntax error is
found, so a good old cut and paste between tools is a not infrequent
practice. Note that a cut and paste is not always possible without
some additional editing since the source code at this point may
contain some special characters or ODI variables.

Handling unexpected runtime errors
ODI Console, new with ODI 11g, is the tool that is the primary aid for diagnostics
during runtime. ODI Console is a web-based application and it needs to be deployed
to WebLogic Server in order to run. It can be accessed directly or via the Fusion
Middleware Control element of Oracle Enterprise Manager that forms part of the
Java EE installation of ODI 11g.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[325]

ODI Console is discussed in more depth in the next chapter, but
it is useful here to see that it gives a similar view of the session
execution log as the Operator Navigator in ODI Studio—albeit
without the ability to use the SQL/Execution window or to alter
session code (we're talking about a runtime environment here).

The drill-down is a little different from the Operator Navigator in that you highlight
and view the parent session.

Then in the right-hand pane you scroll towards the bottom and click on the link on
the desired session step.

www.it-ebooks.info

http://www.it-ebooks.info/

Error Management

[326]

This in turn will show a list of each of the session step tasks (scroll to the
bottom again).

ODI Console also allows you to restart failed sessions. This is most likely to be of
use when there has been some kind of temporary outage of a key source or target
resource. In these situations a simple restart of the session will succeed, but it must
be used with care in a production environment to ensure that unexpected results
are not seen as a consequence. A session restart will most likely be subject to an
organization's operational policies.

Handling operational errors
This category of error handling is covered in the next chapter, which is on management
and monitoring. It involves the use of Fusion Middleware Control with the ODI
plugin that is part of the Java EE installation components for ODI 11g. This allows the
monitoring of ODI execution agents (both standalone and WebLogic-hosted) and also
the availability of both Master and Work repositories. There is also a facility to view
the log files for the various ODI platform components.

So rather than repeat ourselves, we'll leave further discussion of this topic to the
next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[327]

Summary
In this chapter we've discussed two of the three main categories of error
handling, namely, data errors and execution errors.

We saw that handling data errors forms part of a data quality policy and
that rules governing data quality can be imposed through the use of ODI
constraints, a Check Knowledge Module, and either Flow or Static Control
(or indeed, both).

We also walked through the use of error recycling to demonstrate some
of the capabilities of ODI 11g that can assist in this area of activity.

We also took a quick look at some of the design-time error diagnostic
capabilities of ODI that can come in very useful during unit testing in
an iterative development process.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring
ODI Components

As we have seen throughout the book, Oracle Data Integrator is a robust and
comprehensive platform for satisfying your data integration and data orchestration
business and technical requirements. We will now turn our focus to ODI's
management and monitoring capabilities—providing enterprise-ready task
automation and rich visibility into your data and metadata.

The concepts and tasks covered in this chapter have three learning goals:

•	 Demonstrate the benefits and features of the built-in ODI Scheduler to
manage and automate scenario execution

•	 Examine the capabilities and value of the Enterprise Manager Fusion
Middleware Control Console integration for gaining visibility into the
runtime infrastructure health of our data integration solution as well as
key operational statistics

•	 Test drive the ODI Console web application which provides Data Lineage
capabilities in addition to the ability to perform key functions of the thick
client ODI Studio

Scheduling with Oracle Data Integrator
In this section, we illustrate by example how the out of the box ODI Scheduler
user interface manages which scenarios are run at what scheduled time. ODI also
provides a way to monitor the list of scenarios scheduled to run in the future.
Schedule definitions support both simple (one time) and repetitive executions of a
scenario. But you may ask, "What if my company has standardized on a third-party
scheduling solution for automating tasks within my environment?"

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring ODI Components

[330]

Not to worry, we conclude this section with a discussion of options available
for seamless integration of existing Scheduler solutions with ODI to satisfy the
requirement of executing Scenarios or Load Plans on a scheduled basis.

Overview
Oracle Data Integrator satisfies the need for reliable and repeatable operations
processes by providing an out of the box user interface for schedule management
and automated execution of Scenarios or Load Plans. In addition, operations
personnel are not locked into using the ODI Scheduler user interface for scheduling
ODI tasks. ODI provides various facilities to enable third-party scheduling solutions
to schedule and execute ODI tasks. ODI has a decoupled Scheduler architecture,
separating scheduling data (Work Repository), schedule execution (Agent) and
a programmable interface (web services, command line, and Java API) allowing
third-party Schedulers to manage ODI runtime task execution.

The following figure illustrates the ODI Scheduler architecture:

User

Interface Work

Repository

Master

Repository

Agent

Execute Scheduled Tasks

Schedule Data

WebServices

(Schedule)

Scheduling

DEV / OracleDIAgent

DEV / OracleDIAgent

Before we illustrate the creation of scheduled tasks, it is important to understand
what items can and cannot be scheduled as well as where schedule management
resides within the user interface.

•	 When execution of ODI tasks are triggered outside the ODI Studio client
software, what the Agent executes is an ODI Scenario or a Load Plan

•	 Unlike ODI 10g where there were separate agent types for schedule and
non-schedule agents, ODI 11g has one and only one type of Agent—and
it just happens to be able to schedule tasks

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[331]

As project teams develop and validate ODI interfaces and packages during the
development lifecycle, executable versions called scenarios are produced for release
into production. The following ODI objects can be converted into a Scenario:

•	 Interface
•	 Package
•	 Procedure
•	 Variable

Load Plans are executable objects in ODI which help users orchestrate the execution
of Scenarios, they were introduced in ODI 11.1.1.5.0. Load Plan steps can be executed
in parallel or sequentially.

The best practice for a production Work repository is that only Scenarios or Load
Plans are present, keeping the originating source objects only in pre-production
Work repositories. The benefits of following this best practice process are:

•	 Eliminates changes/enhancements being made directly in production.
ODI Studio does not show an interface mapping for an ODI interface or
diagram for a package data workflow when opening a Scenario. Changes
to the interface/package/procedure/variable must be made in another
Work repository where the non-runtime only equivalents are present.

•	 Encourages the use of multiple environments during a data integration
project lifecycle. To make a change to the runtime behavior of the Scenario
in production, the change must be made in another environment that has
more than just runtime versions deployed to the Work repository.

Automating Scenario generation
You may be asking yourself "Do I have to generate a scenario one
at a time for each scenario I need in the production environment?"
The good news is that the answer is no!
ODI provides a tool for automating the generation of scenarios
called OdiGenerateAllScen. Additional information on
using OdiGenerateAllScen can be found in the ODI product
documentation at http://docs.oracle.com/cd/E23943_01/
integrate.1111/e12643/appendix_a.htm#CEGFHFIE.
It is also possible to generate or regenerate Scenarios using the
Scenario generation wizard in ODI Studio at the Project or Folder
levels within Designer.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring ODI Components

[332]

Illustrating the schedule management user interface
To jumpstart your understanding of the ODI scheduling capabilities, we will illustrate
an implementation of a commonly seen data integration scheduling requirement.

Creating a scheduled execution that will execute exactly
once
In this illustration, an "exactly once" requirement is configured. The configuration
maps to a one-time data load. In this example, we use the Load Sales Person interface
we created in Chapter 7, Working with Microsoft SQL Server.

1.	 We create the Load Sales Person scenario from the Load Sales Person
interface in Designer. We right click on the interface name and select
Generate Scenario. We enter LOAD SALES PERSON AS SCENARIO as the
scenario name and press OK.

2.	 Then we expand the tree control for the Load Sales Person interface. We see
a node for Scenarios under Load Sales Person. We verify that an entry exists
for LOAD_SALES_PERSON_AS_SCENARIO Version 001 and expand the
tree control for that entry.

3.	 We select and right click on the Scheduling node and select New Scheduling.

4.	 In the Definition tab, we make the following selections:
°° Context: Global
°° Agent: OracleDIAgent
°° Under the Status region of the finger tab dialog, we make the

following modification:
•	 Active: Selected

°° Under the Executions region of the finger tab dialog, we specify the
following parameters:

•	 Simple: Selected

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[333]

•	 Date: We select today's date
•	 Time: We select a time within a few minutes of the present

time
5.	 We select the Execution Cycle tab. Under the Repetition region, we select

the None (Execute Once) radio button. No changes need to be made to the
Constraints region of the dialog.

Creating a repeating scheduled execution
Under the Execution Cycle finger tab, we can also check
Many times to create a repeating schedule. The maximum
number of repetitions as well as the maximum cycle
duration can be specified in this panel

6.	 We click on the save icon in the Designer Navigator icon toolbar and verify
that a new scheduled entry appears under the Scheduling node of the
LOAD_SALES_PERSON_AS_SCENARIO Version 001 scenario.

7.	 The schedule entry has been defined for the scenario, but is not yet visible to
the OracleDIAgent agent. Schedule changes do not take effect immediately.
After creating a schedule in ODI Studio, agents have their runtime schedule
list updated during one of two events:

°° A restart of the agent (stopping/starting the agent)
°° The agent receives an update schedule request

8.	 We switch to Topology by selecting the Topology tab. We expand the
Physical Architecture accordion view. Under Agents, we select and
right-click on the OracleDIAgent agent, selecting Update Schedule on
the pop-up menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring ODI Components

[334]

9.	 A pop-up dialog appears. We click on the Select All Work Repositories
checkbox and press the OK button. An Information dialog appears stating
that the Schedule update is complete. Click on OK.

Quiz

True/False
If you want to stop a scenario execution scheduled for daily
executions from executing a second time, one way to do that is
stopping and restarting the ODI agent.
Answer: False. While daily execution of the scenario would
not take place while the agent is stopped, all previously defined
schedules within the valid start and stop times will be reloaded
into the Agent and executed for valid scheduled times occurring
after the restart of the Agent. An appropriate way to stop
execution for a particular scenario that has one or more future
executions scheduled would be to open the schedule nodes
for that scenario and set them to inactive (Status region of the
Definition tab). A red indicator is present on a schedule node
that is presently set to inactive:

Using third-party schedulers
Situations can arise where using the built-in ODI 11g Scheduler is not an option
(company-specific scheduling corporate standard or architecture directive). The
ability of ODI to integrate with third-party schedulers is a known, understood, and
addressed requirement. An external scheduler can use a command-line command or
a web service interface to accomplish the task of executing a Scenario or a Load Plan.

Chapter 21, Running Integration Processes of the ODI Documentation describes in
detail the use of a command line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[335]

Boosting your productivity: Tips for entering remote scenario
execution field names
Context: You may be tempted to enter the Name: of the
execution Context in the *Context field. But the Context name
shown in Topology Navigator is an alias for the Context code.
The web service wants the Context code, which may not be
the same as the text you entered for the Name: field when
creating the Context in Topology Navigator. If you see a remote
execution error stating invalid execution Context, go into
Topology Navigator, expand the Context accordion view and
open and view the Context in question. The field below the
Name: field is the Code: field—make sure you enter the string
matching the Context Code and not the Context Name. While
they are usually the same, they do not have to be and has been
observed as a source of execution errors.
Session Name: If an error message appears stating that the
ScenarioName is the cause of the error (not found in Work
repository), check for the correct use of the "_" character rather
than a blank character.
Scenario Version: If you get an error stating that the version
does not exist in the Work repository, enter a three digit number
rather than truncating leading zeros, that is, 001 rather than 1.
The alternate entries of 1, 01, and 0001, all result in an error.
OdiUser: Do not confuse the Fusion Middleware Control
Console userid with the OdiUser.

Fusion Middleware Console Control
Management and monitoring capabilities are required for virtually all enterprise
class software projects. In addition, audit requirements have become increasingly
important to businesses of all sizes.

ODI addresses management and monitoring requirements through integration with
Enterprise Manager Fusion Middleware Control Console (FMCC). The FMCC
provides current visibility into the health and key performance and activity metrics
for the ODI Agent, Master and Work repositories and integration with the ODI
Console web application.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring ODI Components

[336]

Taking a hands-on approach to the FMCC, the following FMCC features and
capabilities are illustrated in this section:

•	 Illustrate how to launch and access the diverse and rich management and
monitoring capabilities for an ODI domain

•	 Examine reports on the health, key performance, and activity metrics of the
ODI runtime agent(s)

•	 Define once, control, and reconfigure anywhere
•	 Examine the ODI log files visibility and management within the FMCC

Launching and accessing the FMCC
The default landing page of the FMCC application can be accessed by entering
the URL http://<WebLogic Hostname>:port/em in a web browser. The FMCC
landing page can be used to quickly identify the health status (up/down) of the
Application Deployments (including the ODI JEE agent), WebLogic domain, and
ODI infrastructure. In the tree view navigation on the left, under Application
Deployments, is a selectable link for oraclediagent—the deployed agent
application on WebLogic. When selected, the Agent page shows everything you
want to know about the JEE Agent runtime health, activity metrics, and published
web services from the Agent (OdiInvoke) as well as a convenient ability to
generate test web service invocations to OdiInvoke. More importantly the ODI
infrastructure components are listed under the ODI folder including Master
Repository under ODI with links to access the Work repositories and the various
standalone or JEE agents deployed.

Domain
The named Domain page appears after clicking on the named domain entry under
the WebLogic Domain folder in the Fusion Middleware region of the FMCC
landing screen. Immediate and easy to locate information on the health of the admin
server and core performance metrics are provided as well as information on Clusters
and Application Deployments.

Administrative tasks available on the Domain page are available by selecting the
WebLogic Domain menubar button located at the top left. Administrative tasks that
can be performed in the FMCC web application directly from the Weblogic Domain
drop-down in the upper left of the domain page include:

•	 Starting up or shutting down the Domain
•	 Port usage summary

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[337]

•	 The ability to deploy/undeploy/redeploy an application
•	 Maintain security credentials/policies/roles
•	 Maintain JDBC sources

The percent of uptime, current status, and listen port of the WebLogic admin server
are readily apparent.

It is possible to drill down on an ODI JEE agent deployment by clicking on its link
(such as oraclediagent by default) under Application Deployments and take a look
at the information and actions available when using FMCC to monitor and manage
an agent.

Agent
The Agent is at the heart of the ODI architecture, playing the key roles of a maestro
and data movement conductor between data sources and targets and finishing
the ODI code generation. While the ODI Agent is not a CPU intensive process,
availability, network latency between the agent, sources and target, systems, as
well as reasonable system and agent load volumes, are critical to success.

Of immediate interest on the deployed JEE agent page are Requests (per minute),
Request Processing Time (ms), and available Web Services (OdiInvoke) with an
accompanying Test button to test the web service.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring ODI Components

[338]

Starting and stopping
In addition, the user has control to Start Up and Shut Down the Agent by
selecting the Application Deployment drop-down in the upper left section
and selecting Control.

Performance summary
To display a graphical view of the Agent performance summary statistics
by time, select Application Deployment under oraclediagent, and select
Performance Summary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[339]

The duration of the Performance Summary graph can be increased or decreased by
selecting the - / + zoom symbols at the upper right.

Log file visibility and aggregation
ODI Operator can have both real-time and historical consolidated views on multiple
log files of interest by using the Fusion Middleware Control Console. The new
consolidated log file viewer can access any deployed JEE Agent web application,
WebLogic Server, ODI Console web application, and the FMCC web application log
itself among others. This consolidated log view can help troubleshoot issues easily.

Visibility
When viewing the Weblogic Domain or AdminServer entries, the user can view
and search log messages by selecting the Logs | View Log Messages entry from the
WebLogic Application Server drop down at the top left of the screen. Additional and
more comprehensive searches can also be performed by selecting Broaden Target
Scope which provides the ability to view, search, and export resulting log file search
result messages to a file. Selecting Broaden Target Scope provides a navigation
entry point for consolidated log file viewing and searching across the hierarchies of
manageable assets in the left hand tree view. Consolidated logs can also be viewed
by selecting the Farm drop down and selecting Logs | View Log Messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring ODI Components

[340]

Aggregation
When selecting the Farm | View Log Messages, or selecting Broaden Target Scope
from another view log file page within FMCC, the configurable search log page user
interface is presented with a complete set of files to choose from when performing
your search.

When pressing the Search button, the default logging configuration is executed
for targets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[341]

The ability to aggregate searches across many Target Log Files greatly improves the
ODI users' productivity. Not only is the expansion of the Selected Targets useful for
ensuring the proper entries are selected, the expanded dialog also has a much greater
utility by itself. Here we have a well known landing pad for viewing the list of
locations on disk for all of the ODI relevant Selected Targets on a given installation.
Entire log files can also be viewed within FMCC.

Repository visibility
The FMCC also provides valuable and productive visibility into the data within the
ODI Master and Work repositories. From the health of deployed agents to Session
statistics, the FMCC frees ODI users from having to create custom one-off solutions
for monitoring the health of their agents and having to bring up ODI Studio and
Operator Navigator to view the results of a Session. The FMCC provides visibility
into key physical assets of the ODI solution—the agents. In addition, given an agent,
users can now view Load Plans executions and Session summary information.

Session statistics
Summary and detailed Session statistics are available in the FMCC. In addition, a
well thought out capability for searching the contents of Session history is available.
To get to the Session statistics search dialog, follow the given steps:

1.	 Select MASTER REPOSITORY under the Farm ODI folder:

2.	 From the Master Repository drop-down, select Search Sessions

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring ODI Components

[342]

3.	 Enter your search criteria and press Search or simply press Search to
see all the Session history.

To view the details of a session record, click on the specific session number in the
first column (Session Number) and the session details appear.

Oracle Data Integrator Console
Oracle Data Integrator Console provides remote management capabilities of key
ODI components and objects. But ODI Console goes beyond the functionality
offered in ODI Studio in two important areas: Data Lineage and Flow Map.
Taking a hands-on approach to the FMCC, the following ODI Console features
and capabilities are illustrated in this section:

•	 How to launch and access ODI Console
•	 Data Lineage
•	 Flow Maps

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[343]

Launching and accessing ODI Console
The ODI Console web application is deployed on a WebLogic application server
and its default landing page can be accessed by entering the URL associated with
the context root of the ODI Console web application. To launch ODI Console,
follow the given steps:

1.	 Open a web browser and enter http://myhost:port/odiconsole.
2.	 Select the repository you wish to connect to from the Repository drop down.
3.	 Enter the User Id and Password credentials for the repository and click on

Sign In.

Data Lineage
Data Lineage offers the capabilities to look at an end to end view of data flows
from a specific datastore point of view. These views cross the traditional Model
and Interface views offered in Designer. Data Lineage also offers the end user
drill down capabilities as well as the ability to easily and accurately assess impact.
To access the Data Lineage functionality, follow the given steps:

1.	 Launch ODI Console in your web browser.
2.	 Log in using the appropriate Work repository.
3.	 With the Browse tab selected, a user can click on the expansion icon to

the left of Design Time, and then click on the expansion icon to the left
of Models. Here we see both Flow Map and Data Lineage nodes.

4.	 Click on Data Lineage to highlight the entry, then move up to select the
View icon in the Browse tab icon toolbar. A Data Lineage tab will appear
in the tabbed dialog workspace on the right side of the user interface.

The View icon is the one that looks like a pair of sunglasses.

In the Options region, you will need to select:

°° Model
°° Sub-Model and
°° Datastore

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring ODI Components

[344]

5.	 Additional options such as the ability to display Interfaces in the Lineage
graph are also available

6.	 As the number of sources, models, interfaces, packages, and targets increase
over time, having a Data Lineage reporting function producing varying
granularity of detailed diagrams showing our data integration solution
relationships and dependencies is invaluable to quickly and productively
understand the as-is solution and perform impact analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[345]

7.	 Press View to view the Data Lineage:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring ODI Components

[346]

The resulting diagram offers the opportunity to include a number of optional
content items in the Data Lineage reports including Interfaces, Logical Schema,
and Model names.

Click on Show Interfaces to display interfaces in the figure. Drilldown capabilities
within the Data Lineage reports are also supported.

Flow Map
Where Data Lineage is focused on providing visibility into the relationships,
dependencies, and data flow from or to a single datastore, the Flow Map feature is
Model-centric and broader in scope by reporting on additional ODI key constructs
as well as varying the granularity of detail of the Model-centric dependency reports.
Granularity of detail in the Flow Map graphical reports can be controlled by:

•	 Restricting reported dependencies to only certain ODI projects
•	 Tailoring the granularity of detail of the Flow Map by selecting one item

from each of the following two groups:

°° Models, Sub-Models, or Datastores
°° Projects, Folder, Packages, or Interfaces

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[347]

A Flow Map representing the relationship between Datastore and Interface objects
for only a project or two is similar to a Data Lineage report that includes interfaces,
but may reflect more than one Datastore. The ability to drill down on Models,
Projects, and Interfaces is similar to Data Lineage reports, though each ODI object
type has its own representation of information presented on the drill down.

Summary
Management and monitoring are two critical non-functional requirements for an
enterprise class application. As illustrated in this chapter, Oracle Data Integrator
provides key capabilities in these areas. You should now be more knowledgeable
and comfortable using the management and monitoring capabilities of ODI.

In this chapter we examined the following topics:

•	 Execution scheduling and ODI, including how to view and use the built-in
ODI Scheduler for creating one-time and recurring data integration tasks.
The options for integrating with third-party schedulers was also covered
in detail.

•	 A thorough look at how to launch and use the Oracle Fusion Middleware
Control Console for visibility into the health, status, and key performance
statistics of the Oracle Data Integrator runtime infrastructure.

•	 Learning how to launch the new Oracle Data Integrator Console web
application and learning how to use both the Data Lineage and Flow
Map features—features that can dramatically improve the productivity
of developers, testers, and business analysts on your data integration
project teams.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Concluding Remarks
Congratulations! If you went through the different chapters, you are well
on your way to becoming a productive Oracle Data Integrator developer and
data integration project team member. ODI is one of the most comprehensive
and popular data integration products in the industry, so you have added an
in-demand entry to your skill set portfolio and resume.

By investing your time in this book, you have become well-versed and proficient
in using the ODI Studio and Agent functionalities and have gained valuable
expertise in creating data integration mappings and workflows. The authors of
this book have dozens of years of accumulated experience working with Oracle
Data Integrator on a daily basis, helping you avoid some of the frequently seen
bumps along the road when first learning the product by providing a generous
number of tips and hints within the various chapters. Our goal was not to simply
provide a cursory or introductory understanding of ODI, but rather to give you a
jumpstart in productivity as soon as your first data integration project starts. You
now have the knowledge of working with Oracle, Microsoft SQL Server, MySQL,
flat files, and XML files, as both sources and targets, as well as using all the
different ODI objects and concepts. Finally, you should have developed confidence
in working with the data integration project aspects—from defining sources and
targets, to creating mappings and data workflows, to Agent execution, testing,
troubleshooting, management, monitoring, Data Lineage, and impact analysis.

So what's next? Our first recommendation is to gets hands-on with Oracle Data
Integrator as soon as possible and start using it frequently. Other sources of material
to help you internalize Oracle Data Integrator and data integration concepts are:

•	 The ODI product forum on Oracle Technology Network (http://forums.
oracle.com/forums/forum.jspa?forumID=374)

•	 My Oracle Support (https://support.oracle.com/), which provides an
extensive knowledge base about Oracle Data Integrator

www.it-ebooks.info

http://www.it-ebooks.info/

Concluding Remarks

[350]

•	 Oracle Data Integration blog (http://blogs.oracle.com/
dataintegration/)

•	 A couple of blogs covering ODI: BI Quotient (http://www.business-
intelligence-quotient.com/), More to Life than this (http://john-
goodwin.blogspot.com/), and ODI Experts (http://www.odiexperts.com/)

•	 Oracle University (http://education.oracle.com—look under
Middleware Training then Data Integration)

•	 We should also mention several books from Packt Publishing that we find
are often complementary when working with customers on their data
integration initiatives including Oracle SQL Developer 2.1, Oracle GoldenGate
11g Implementer's guide, and Getting Started With Oracle SOA Suite 11g R1 – A
Hands-On Tutorial

Finally, it is worth repeating some of the themes mentioned in the book. Use ODI
over home-grown SQL coding for your data transfer and data enrichment and
transformation activities—let the ODI Knowledge Modules do the heavy lifting
SQL generation work for you. You now have the knowledge and confidence to
"just say no" to the often seen default approach of manual coding implementations.
Consider using Oracle Data Integrator and Oracle GoldenGate together when
real-time data access of a relational database source is required. For cases where
the amount of real-time data is smaller and changes are inherently event-driven,
consider ODI Data Services to provide real-time data integration and shared
remote access to your source of truth data in your target models. Lastly, have your
SOA business processes delegate bulk and large data operations to Oracle Data
Integrator through web services.

Build your skills and career with confidence and courage with Oracle Data Integrator.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
additional_path.txt file 184
Agent

about 337
performance summary 338, 339
starting 338
stopping 338

aggregation 340, 341
anatomy, interface flow

database and file to database 105-108
examining 105
file and database to second file 108, 109
file to enterprise application 110, 111

anticipated errors, execution errors
management

deliberate benign error, causing
with OdiBeep 320

handling 319

B
BCP 22
BI Quotient

URL 350

C
CDC tools 299
Change Data Capture. See CDC tools
checkbox type option 118
Check Knowledge Modules (CKMs) 113
column mappings, product data 181
components, ODI. See ODI components

Console 24, 25
Contexts

defining 93
Control Knowledge Modules (CKM) 29
controls, interfaces 34
custom reverse engineering 102

D
databases

working with 127
data errors

about 309
correcting 316-318
detecting 310
diverting 310
managing 310
quality rules violation, detecting 310
recycling 316, 318

data errors management
about 310
data quality, with ODI constraints 310-312
errors, recycling 318, 319
error thresholds, using 316
flow control, using 314
ODI error table contents 314
ODI error table prefix 313
ODI update keys, recycling 318, 319
static control, using 315

data flow logistics 130
Data Lineage

about 343
accessing 343, 344

www.it-ebooks.info

http://www.it-ebooks.info/

[352]

data, Load_Customer interface
moving, ODI interface used 148-164

data topology, Load_Customer interface
building 131
setting up 132-140

declarative design 31
declare variable 297
Definition finger-tab 88
descriptions, interfaces 31
designer navigator, ODI Studio 21

E
ELT architecture

key differences 13
Enterprise Manager Fusion Middleware

Control Console integration 329
ETL tools 11
evaluate variable 297
event detection 299
exception handling, Load Plans 305, 306
execution

using, in MySQL 200
execution, checking with Operator

Navigator
Load Sales Person interface, executing 232
Load Sales Person results,

examining 233-235
Load Sales Person results,

verifying 233-235
Load Sales Region results, examining 236
Load Sales Region results, verifying 236

execution contexts
about 27
reviewing 27, 28

execution errors
about 309
managing 319

execution errors management
about 319
anticipated errors, handling 319
unexpected design-time errors,

handling 321
unexpected runtime errors,

handling 324-326

execution orders, ODI agent
execution from command line 23
execution from console 23
execution from Studio 23
execution from web service 23

execution repository 17
Expression Editor 224
Extensible Markup Language. See XML

F
FILE_GENERIC 94, 95
file operations 299
file reverse engineering 103, 104
flat-file data integration

about 239
mapping 242
partner data target 241
partner interface flow logistics 242
source 242
step-by-step example 243

flat files
file data, integrating into Oracle table 241
prerequisites 240
scope 240
task overview 240
working with 240

Flow Map 346, 347
flows, interfaces 32, 33
Flow tab, ODI interfaces 123, 124
FMCC

about 335
accessing 336
Agent 337
Domain page 336, 337
features 336
launching 336
log file visibility 339
repository visibility 341

Fusion Middleware Console Control. See
FMCC

H
Hypersonic SQL 16

www.it-ebooks.info

http://www.it-ebooks.info/

[353]

I
IBM/DB2 (UWL and iSeries) 16
IKM Teradata to File (TTU) 29
installation modes, ODI 11g

creation from the ODI Studio 37
Oracle Repository Creation Utility (RCU)

installation 37
Integration Knowledge

Module (IKM) 29, 32, 107
integration mappings 129
integrations data 213
integration source 129
integration target 128
interfaces

about 31, 112
controls 34
descriptions 31
flows 32
mappings 31

internet 299
inventory data

about 182
integrating 182
inventory mappings 182
inventory sources 182
inventory target 182
moving 201-208

inventory interface flow logistics 183
inventory mappings, inventory data 182

J
JDBC driver 177
JDBC finger-tab 89
JEE agent

about 22
benefits 22

JEE Agent web application 339
Journalization Knowledge

Module (JKM) 29
Journalizing Knowledge Modules

(JKMs) 113
JRockit JDK 1.6.0_24 67

K
key concepts, ODI. See ODI key concepts
KM options

checkbox type 118
text typed option 118
value typed option 118

Knowledge Module objectives. See
objectives, Knowledge Module(KM)

Knowledge Modules (KM)
about 29, 108
behavior, configuring with KM

options 117-119
Check Knowledge Modules (CKMs) 113
Definition finger-tab 115
Description text 115
Details finger-tab 116
importing 112-115
Integration Knowledge Module (IKM) 107
Journalizing Knowledge Modules

(JKMs) 113
Loading Knowledge Modules (LKMs) 107
multi-technology IKM 112
objectives 28
overview 115-117
selecting 112, 113
Service Knowledge Modules (SKMs) 113
single technology IKM 112
types 29

Knowledge Module types
CKM 29
IKM 29
JKM 29
LKM 29
RKM 29
SKM 29

L
lifecycle management,

ODI repository 18, 19
LKM File to Oracle 29
Load_Customer interface

building 131
execution, checking with Operator

Navigator 165-175

www.it-ebooks.info

http://www.it-ebooks.info/

[354]

Load_Customer interface, building
data, moving using ODI interface 148-164
data topology, building 131
model metadata, Reverse-engineering 141

Loading Knowledge Modules
(LKMs) 29, 32, 107

Load Plans
about 82, 303, 330
exception handling 305, 306
objects, used 304, 305
parallel steps 304
serial steps 304
using 307

Load Sales Person interface
creating 221, 222
executing 232

Load Sales Person mapping
creating 223

Load Sales Person results
examining 233
verifying 233

Load Sales Region Interface
creating 229-232

Load Sales Region results
examining 236
verifying 236

Local_as_prodsystem node 187
log file visibility 339
Logical Schemas

defining 92, 93

M
mappings, interfaces 31, 32
mapping tab, ODI interfaces

about 121, 122
DBMS Aggregate 122
DBMS Function 122
field mappings 122
Fixed Value or Constant 122
Source Column 122

master repository 16
metadata 101, 300
metadata tools 300
Microsoft SQL Server 16

model metadata, Load_Customer interface
verse-engineering 141-148

models, ODI
about 30
diagrams 30
diagrams, benefits 30
metadata, importing 30
submodels, creating 30

Multiload 22
My Oracle Support

URL 349
MySQL

about 178
advantages 178
benefits 177
disadvantages 178
downloading 179
installing 179
product data, integrating 180, 181
product interface flow logistics 181
using, with ODI 183
working with 178, 179

MySQL JDBC driver
adding 184, 185

MySQL, using with ODI
execution, using 184, 199-201
inventory data, moving 184, 201-208
MySQL JDBC driver, adding 183-185
product data, moving 184, 190-196
reverse engineering revisited 184, 188-190
simulation, using 184, 197
topology, expanding 183-185

N
navigators, ODI Studio

designer navigator 21
operator navigator 22
security navigator 20
topology navigator 20

non-database technologies
about 94
FILE_GENERIC 94, 95
XML files, handling 95-100

NZload 22

www.it-ebooks.info

http://www.it-ebooks.info/

[355]

O
objectives, Knowledge Module (KM)

customizations, allowing 28
integration best practices, encapsulating 28
productivity, improving 28

ODI
Contexts, defining 93
databases 127
data errors 309
error management 309
execution errors 309
flat-file data integration 239
Load Plans 303
Logical Schemas, defining 92, 93
MySQL, using with 183
non-database technologies 94
operational errors 309
overview 330
packages 295
physical data servers, defining 86-89
Physical Schemas, defining 90
product installation 35
reverse-engineering metadata 100
scheduling with 329, 330
SQL Server 2008, working with 211
third-party schedulers, using 334
Topology Navigator 86
variables 71
variables, defining 71
variables, using for altering workflows 80
variables, using for dynamic

information 74
XML files, working with 268

ODI 11g
about 263
configuring, for using MySQL 179
installing 37
post installation 69

ODI 11g installation
about 37
installation modes 37
ODI Agent, installing 50-66
ODI Studio, installing 50-66
ODI Studio, starting 67, 68
repository, creating with RCU 38-50

ODI addresses management 335
ODI agent

about 22
execution orders 23
JEE agent 22
standalone agent 22
types 22

ODIC
about 342
accessing 343
Data Lineage 343-346
Flow Map 346, 347
launching 343

ODI components
about 13
Agents 14
Console 14
repository 13
Studio 13

ODI Console web application 339
about 329

ODI constraints
conditions 312
keys 312
references 312

ODI ELT architecture 12
ODI error table contents 314
ODI error table prefix 313
ODI Experts

URL 350
OdiGenerateAllScen 331
ODI Interfaces

examining 119
Flow tab 123, 124
Mapping tab 121, 122
Overview tab 120
Quick-Edit tab 125

ODI JDBC driver, for XML
about 265
basic concepts 265-268

ODI JEE agent deployment 337
ODI key concepts

about 26
execution contexts 27
interfaces 31
Knowledge Module 28

www.it-ebooks.info

http://www.it-ebooks.info/

[356]

models 30
packages 34
scenarios 34

ODI Objects 300
ODI product architecture

about 13
components 13
diagrammatic representation 14

ODI product forum
URL 349

ODI repository
about 15
creating, with RCU 38-50
execution repository 17
lifecycle management 18, 19
location 16
master repository 16
overview 15
types 18
work repository 17

ODI Scenario 330
ODI Scheduler 329
ODI Scheduler architecture

diagrammatic representation 330
ODI Scheduler user interface 330
ODI Schedules 23
ODI Studio

about 19
navigators 20
prerequisites 36
starting 67, 68

ODI tools
about 299
adding, to package 300
categories 299
Change Data Capture (CDC) 299
internet 299
metadata 299
ODI Objects 299
plugins 299
using 300, 301

ODI tools, categories
event detection 299
SAP 299

ODI topology
expanding 215
setting up 215

operational errors
about 309
handling 326

Operator Navigator
about 232
used, for checking execution 232
used, for checking Load_Customer

interface execution 165-175
operator navigator, ODI Studio 22
Oracle 16
Oracle Data Integration blog

URL 350
Oracle Data Integrator Console. See ODIC
oraclediagent 23
Oracle Enterprise Manager 26
Oracle Enterprise Manager Plugin 14
Oracle Technology Network

ODI product forum, URL 349
Oracle Universal Installer

prerequisites 36
Oracle University

URL 350
out-of-the-box KMs 30
overview tab, ODI interfaces 120

P
packages

about 34, 295
creating 295, 296
no infinite loop 302
retry versus fail 301
scenario, generating from 302, 303
steps, adding 297, 298
tools, adding 299
using 307

Partner data integration, flat-file
data integration example

about 247-255
interface, creating 256, 257
interface, running 258-260
project, creating 255
project, preparing 255

partner interface flow logistics 242
Physical Architecture, MySQL

defining 186

www.it-ebooks.info

http://www.it-ebooks.info/

[357]

physical data servers
defining 86-89

Physical Schema editor 91
Physical Schemas

data schemas 90, 91
defining 90
work schemas 90-92

plugins 300
PO processing example solution

automatic Temporary Index
Management 227-229

execution, checking with Operator
Navigator 232

interfaces, creating 221
Load Sales Person interface 221, 222
Load Sales Person mapping 223-227
Load Sales Region Interface 229-232
mappings, creating 221
Model metadata,

reverse-engineering 219, 220
ODI topology, expanding 215
topology, setting up 215-219

post installation, ODI 11g installation
parameters files review 69

prerequisites, product installation
about 35
prerequisites for Oracle

Universal Installer 36
prerequisites for repository 36
prerequisites for Standalone Agent 37
prerequisites for Studio 36

prodsystem schema 186
product_base 180
product_category 180
product data

integrating 180
moving 190-196
PO Processing DATAMART schema 180
prodsystem MySQL schema 180
product data target 180

product installation, ODI
about 35
prerequisites 35

product interface flow logistics 181
Property Inspector toolbar 222

Q
Quick-Edit tab, ODI interfaces 125

R
RCU

about 35
downloading 38
security parameters 44
used, for creating repository 39-50

refresh variable 297
repository

installing 36
prerequisites 36

Repository Creation Utility. See RCU
repository visibility

about 341
session statistics 341, 342

reverse engineering
metadata, from MySQL 188-190

reverse-engineering metadata
about 100, 101
custom reverse engineering 102
file reverse engineering 103, 104
standard reverse engineering 101, 102
XML reverse engineering 104

reverse engineering revisited 188
Reverse Knowledge Modules (RKM) 29

S
sales data, SQL Server 2008

integrations data 213
source data 212, 213
target data 213

sample scenario description, databases
about 128
data flow logistics 130
integration mappings 129
integration source 129
integration target 128, 129

SAP 300
scenario

generating, from package 302, 303
scenarios 34

www.it-ebooks.info

http://www.it-ebooks.info/

[358]

schedule management user interface
illustrating 332
scheduled execution, creating 332, 334

Schema 90
security navigator, ODI Studio 20
security parameters, RCU

Master Repository ID 44
Supervisor Password 44
Work Repository ID 45
Work Repository name 45
Work Repository Password 45
Work Repository Type 45

Service Knowledge Modules
(SKMs) 29, 113

service-oriented architecture. See SOA
set variable 297
simple Purchase Order file integration,

with XML file
about 274
interface, creating 280-287
metadata, reverse-engineering 278, 279
procedures, creating 288-292
topology, expanding 274-278

simulation
using, in MySQL 197

SOA 263
source data 212, 213
SQL Loader 22
SQL Server 2008

sales data, integrating 212
task, overview 212
working with 211

standalone agent
about 22
benefits 23
prerequisites 37

standard reverse engineering 101, 102
step-by-step example, flat-file

data integration
about 243
Partner data, integrating 247
topology, expanding 244-246

Sybase ASE 16

T
target data 213
Temporary Index Management

illustrating 228
text typed option 118
third-party schedulers

using 334
topology

expanding 185, 187
topology navigator, ODI Studio 20
Transform (ELT) architecture 272

U
unexpected design-time errors, execution

errors management
error investigation, in Operator

Navigator 322-324
handling 321

unexpected runtime errors,
execution errors management

handling 324-326
utilities 300

V
value typed option 118
variables

defining 71
definitions 72, 73
history 74
location and scope 71, 72
refreshing 73, 74

variables, for dynamic information
Declare Variable 76
hardcoded value, setting 75
Refresh Variable 76
value, assigning to variable 75
variables, in interfaces 77-79
variables, in models 79
variables, in topology 80
variables, referencing 77

www.it-ebooks.info

http://www.it-ebooks.info/

[359]

variables, to alter workflows
Load Plans 82
packages 80

visibility 339

W
WebLogic Domain menubar button 336
WebLogic Server 339
work repository 17

X
XML

about 263
introducing 263-265

XML files
handling 96-100

XML files, with ODI
background 268
data, integrating from single

Purchase Order 270-272
models, creating from XML file 270
overview 269
Purchase Order, integrating from

XML file 269
requisites 268
scope 269
simple Purchase Order file, integrating 274
single order interface flow logistics 272, 273

XML reverse engineering 104

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Getting Started with Oracle Data

Integrator 11g: A Hands-On Tutorial

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle SOA Suite 11g R1
Developer's Guide
ISBN: 978-1-84968-018-9 Paperback: 720 pages

Develop Service-Oriented Architecture Solutions with
the Oracle SOA Suite

1.	 A hands-on, best-practice guide to using and
applying the Oracle SOA Suite in the delivery
of real-world SOA applications

2.	 Detailed coverage of the Oracle Service Bus,
BPEL PM, Rules, Human Workflow, Event
Delivery Network, and Business Activity
Monitoring

3.	 Master the best way to use and combine
each of these different components in the
implementation of a SOA solution

Oracle 11g Streams
Implementer's Guide
ISBN: 978-1-847199-70-6 Paperback: 352 pages

Design, implement, and maintain a distributed
environment with Oracle Streams

1.	 Implement Oracle Streams to manage and
coordinate the resources, information, and
functions of a distributed system

2.	 Get to grips with in-depth explanations of the
components that make up Oracle Streams, and
how they work together

3.	 Learn design considerations that help identify
and avoid Oracle Streams obstacles – before
you get caught in them

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle 10g/11g Data and
Database Management Utilities
ISBN: 978-1-847196-28-6 Paperback: 432 pages

Master twelve must-use utilities to optimize the
efficiency, management, and performance of your
daily database tasks

1.	 Optimize time-consuming tasks efficiently using
the Oracle database utilities

2.	 Perform data loads on the fly and replace the
functionality of the old export and import
utilities using Data Pump or SQL*Loader

3.	 Boost database defenses with Oracle Wallet
Manager and Security

Oracle Business Intelligence :
The Condensed Guide to
Analysis and Reporting
ISBN: 978-1-84968-118-6 Paperback: 184 pages

A fast track guide to uncovering the analytical power
of Oracle Business Intelligence: Analytic SQL, Oracle
Discoverer, Oracle Reports, and Oracle Warehouse
Builder

1.	 Install, configure, and deploy the components
included in Oracle Business Intelligence
Suite (SE)

2.	 Gain a comprehensive overview of components
and features of the Oracle Business Intelligence
package

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Product Overview
	ODI product architecture
	ODI repository
	Repository overview
	Repository location
	Master repository
	Work repository
	Execution repository
	Lifecycle management and repositories

	Studio
	Agent
	Console
	Oracle Enterprise Manager

	ODI key concepts
	Execution Contexts
	Knowledge Modules
	Models
	Interfaces
	Interface descriptions
	Interface mappings
	Interface flow tab
	Interface controls

	Packages and Scenarios

	Summary

	Chapter 2: Product Installation
	Prerequisites
	Prerequisites for the repository
	Prerequisites for the Oracle Universal Installer
	Prerequisites for the Studio
	Prerequisites for the Standalone Agent

	Installing ODI 11g
	Two installation modes
	Creating the repository with RCU
	Installing the ODI Studio and the ODI Agent
	Starting the ODI Studio for the first time

	Post installation—parameter files review
	Summary

	Chapter 3: Using Variables
	Defining variables
	Variable location and scope
	Variable definitions
	Refreshing variables
	Variable history

	Using variables for dynamic information
	Assigning a value to a variable
	Setting a hardcoded value
	Refresh Variable
	Passed as a parameter (Declare Variable)

	Referencing variables
	Variables in interfaces
	Variables in models
	Variables in topology

	Using variables to alter workflows
	Packages
	Load Plans

	Summary

	Chapter 4: ODI Sources, Targets, and Knowledge Modules
	Defining Physical Schemas, Logical Schemas, and Contexts
	Defining physical data servers
	Defining Physical Schemas
	Data schemas and work schemas

	Defining Logical Schemas and Contexts
	Non-database technologies

	Reverse-engineering metadata into
ODI models
	Standard reverse-engineering
	Custom reverse-engineering
	File reverse-engineering
	XML reverse-engineering

	Examining the anatomy of the
interface flow
	Example 1: Database and file to database
	Example 2: File and database to second file
	Example 3: File to Enterprise Application

	Importing and choosing Knowledge Modules
	Choosing Knowledge Modules
	Importing a Knowledge Module
	KMs—A quick look under the hood
	Configuring behavior with KM options

	Examining ODI Interfaces
	Overview tab
	Mapping tab
	Flow tab
	Quick-Edit tab

	Summary

	Chapter 5: Working with Databases
	Sample scenario description
	Integration target
	Integration source
	Integration mappings
	Data flow logistics

	Exercise 1: Building the Load_Customer interface
	Building the topology
	Reverse-engineering the model metadata
	Moving the data using an ODI interface
	Checking the execution with the Operator Navigator

	Summary

	Chapter 6: Working with MySQL
	What you can and can't do with MySQL
	Working with MySQL
	Obtaining and installing the software
	Overview of the task
	Integrating the product data
	Product data target, sources, and mappings
	Product interface flow logistics

	Integrating inventory data
	Inventory target, sources, and mappings
	Inventory interface flow logistics

	Using MySql with ODI
	Adding the MySQL JDBC driver
	Expanding the topology
	Reverse-engineering revisited
	Preparing to move the product data
	Using simulation and execution
	Moving the inventory data

	Summary

	Chapter 7: Working with Microsoft
SQL Server
	Example: Working with SQL Server
	Overview of the task
	Integrating the Sales data
	Source
	Target
	Integrations

	Sample scenario
	Expanding the ODI topology
	Setting up the topology
	Reverse-engineering the Model metadata
	Creating interfaces and mappings
	Load Sales Person interface
	Load Sales Person mapping
	Automatic Temporary Index Management
	Load Sales Region interface
	Checking the execution with the Operator Navigator
	Execute the Load Sales Person interface
	Verify and examine the Load Sales Person results
	Verify and examine Load Sales Region results

	Summary

	Chapter 8: Integrating File Data
	Working with flat files
	Scope
	Prerequisites for flat files
	Integrate the file data into an Oracle table
	Partner data target, source, and mappings
	Partner interface flow logistics

	Step-by-step example
	Expanding the topology for file handling
	Integrating the Partner data
	Creating and preparing the project
	Creating the interface to integrate the Partner data
	Running the interface

	Summary

	Chapter 9: Working with XML Files
	Introduction to XML
	Introducing the ODI JDBC driver for XML
	ODI and its XML driver—basic concepts

	Example: Working with XML files
	Requirements and background
	Scope
	Overview of the task
	Integrating a Purchase Order from an XML file
	Creating models from XML files
	Integrating the data from a single Purchase Order
	Single order interface flow logistics

	Sample scenario: Integrating a simple Purchase Order file
	Expanding the Topology
	Reverse-engineering the metadata
	Creating the Interface
	Creating procedures

	Summary

	Chapter 10: Creating Workflows—Packages and Load Plans
	Packages
	Creating a package
	Adding steps into a package
	Adding tools in a package
	Changed Data Capture
	Event Detection
	Files
	Internet
	Metadata
	ODI Objects
	Plugins
	SAP
	Utilities
	Adding tools to a package
	Using ODI Tools

	Retry versus fail
	Best practice: No infinite loop
	Generating a scenario from a package

	Load Plans
	Serial and parallel steps
	Objects that can be used in a Load Plan
	Exception handling
	Using Packages and Load Plans

	Summary

	Chapter 11: Error Management
	Managing data errors
	Detecting and diverting data errors
	Data quality with ODI constraints
	ODI error table prefix
	Contents of an error table
	Using flow control and static control
	Using error thresholds

	Correcting and recycling data errors
	Recycling errors and ODI update keys

	Managing execution errors
	Handling anticipated errors
	Causing a deliberate benign error with OdiBeep

	Handling unexpected design-time errors
	More detailed error investigation in Operator Navigator

	Handling unexpected runtime errors

	Handling operational errors
	Summary

	Chapter 12: Managing and Monitoring ODI Components
	Scheduling with Oracle Data Integrator
	Overview
	Illustrating the schedule management user interface
	Using third-party schedulers

	Fusion Middleware Console Control
	Launching and accessing the FMCC
	Domain
	Agent
	Starting and stopping
	Performance summary

	Log file visibility and aggregation
	Visibility
	Aggregation

	Repository visibility
	Session statistics

	Oracle Data Integrator Console
	Launching and accessing ODI Console
	Data Lineage
	Flow Map

	Summary

	Chapter 13: Concluding Remarks
	Index

